gcm.cpp 24.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
// gcm.cpp - written and placed in the public domain by Wei Dai

// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM gcm.cpp" to generate MASM code

#include "pch.h"

#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM

#include "gcm.h"
#include "cpu.h"

NAMESPACE_BEGIN(CryptoPP)

word16 GCM_Base::s_reductionTable[256];
volatile bool GCM_Base::s_reductionTableInitialized = false;

void GCM_Base::GCTR::IncrementCounterBy256()
{
	IncrementCounterByOne(m_counterArray+BlockSize()-4, 3);
}

#if 0
// preserved for testing
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c)
{
	word64 Z0=0, Z1=0, V0, V1;

	typedef BlockGetAndPut<word64, BigEndian> Block;
	Block::Get(a)(V0)(V1);

	for (int i=0; i<16; i++) 
	{
		for (int j=0x80; j!=0; j>>=1)
		{
			int x = b[i] & j;
			Z0 ^= x ? V0 : 0;
			Z1 ^= x ? V1 : 0;
			x = (int)V1 & 1;
			V1 = (V1>>1) | (V0<<63);
			V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
		}
	}
	Block::Put(NULL, c)(Z0)(Z1);
}

__m128i _mm_clmulepi64_si128(const __m128i &a, const __m128i &b, int i)
{
	word64 A[1] = {ByteReverse(((word64*)&a)[i&1])};
	word64 B[1] = {ByteReverse(((word64*)&b)[i>>4])};

	PolynomialMod2 pa((byte *)A, 8);
	PolynomialMod2 pb((byte *)B, 8);
	PolynomialMod2 c = pa*pb;

	__m128i output;
	for (int i=0; i<16; i++)
		((byte *)&output)[i] = c.GetByte(i);
	return output;
}
#endif

#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
inline static void SSE2_Xor16(byte *a, const byte *b, const byte *c)
{
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
	*(__m128i *)a = _mm_xor_si128(*(__m128i *)b, *(__m128i *)c);
#else
	asm ("movdqa %1, %%xmm0; pxor %2, %%xmm0; movdqa %%xmm0, %0;" : "=m" (a[0]) : "m"(b[0]), "m"(c[0]));
#endif
}
#endif

inline static void Xor16(byte *a, const byte *b, const byte *c)
{
	((word64 *)a)[0] = ((word64 *)b)[0] ^ ((word64 *)c)[0];
	((word64 *)a)[1] = ((word64 *)b)[1] ^ ((word64 *)c)[1];
}

#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
static CRYPTOPP_ALIGN_DATA(16) const word64 s_clmulConstants64[] = {
	W64LIT(0xe100000000000000), W64LIT(0xc200000000000000),
	W64LIT(0x08090a0b0c0d0e0f), W64LIT(0x0001020304050607),
	W64LIT(0x0001020304050607), W64LIT(0x08090a0b0c0d0e0f)};
static const __m128i *s_clmulConstants = (const __m128i *)s_clmulConstants64;
static const unsigned int s_clmulTableSizeInBlocks = 8;

inline __m128i CLMUL_Reduce(__m128i c0, __m128i c1, __m128i c2, const __m128i &r)
{
	/* 
	The polynomial to be reduced is c0 * x^128 + c1 * x^64 + c2. c0t below refers to the most 
	significant half of c0 as a polynomial, which, due to GCM's bit reflection, are in the
	rightmost bit positions, and the lowest byte addresses.

	c1 ^= c0t * 0xc200000000000000
	c2t ^= c0t
	t = shift (c1t ^ c0b) left 1 bit
	c2 ^= t * 0xe100000000000000
	c2t ^= c1b
	shift c2 left 1 bit and xor in lowest bit of c1t
	*/
#if 0	// MSVC 2010 workaround: see http://connect.microsoft.com/VisualStudio/feedback/details/575301
	c2 = _mm_xor_si128(c2, _mm_move_epi64(c0));
#else
	c1 = _mm_xor_si128(c1, _mm_slli_si128(c0, 8));
#endif
	c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(c0, r, 0x10));
	c0 = _mm_srli_si128(c0, 8);
	c0 = _mm_xor_si128(c0, c1);
	c0 = _mm_slli_epi64(c0, 1);
	c0 = _mm_clmulepi64_si128(c0, r, 0);
	c2 = _mm_xor_si128(c2, c0);
	c2 = _mm_xor_si128(c2, _mm_srli_si128(c1, 8));
	c1 = _mm_unpacklo_epi64(c1, c2);
	c1 = _mm_srli_epi64(c1, 63);
	c2 = _mm_slli_epi64(c2, 1);
	return _mm_xor_si128(c2, c1);
}

inline __m128i CLMUL_GF_Mul(const __m128i &x, const __m128i &h, const __m128i &r)
{
	__m128i c0 = _mm_clmulepi64_si128(x,h,0);
	__m128i c1 = _mm_xor_si128(_mm_clmulepi64_si128(x,h,1), _mm_clmulepi64_si128(x,h,0x10));
	__m128i c2 = _mm_clmulepi64_si128(x,h,0x11);

	return CLMUL_Reduce(c0, c1, c2, r);
}
#endif

void GCM_Base::SetKeyWithoutResync(const byte *userKey, size_t keylength, const NameValuePairs &params)
{
	BlockCipher &blockCipher = AccessBlockCipher();
	blockCipher.SetKey(userKey, keylength, params);

	if (blockCipher.BlockSize() != REQUIRED_BLOCKSIZE)
		throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not 16");

	int tableSize, i, j, k;

#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
	if (HasCLMUL())
	{
		params.GetIntValue(Name::TableSize(), tableSize);	// avoid "parameter not used" error
		tableSize = s_clmulTableSizeInBlocks * REQUIRED_BLOCKSIZE;
	}
	else
#endif
	{
		if (params.GetIntValue(Name::TableSize(), tableSize))
			tableSize = (tableSize >= 64*1024) ? 64*1024 : 2*1024;
		else
			tableSize = (GetTablesOption() == GCM_64K_Tables) ? 64*1024 : 2*1024;

#if defined(_MSC_VER) && (_MSC_VER >= 1300 && _MSC_VER < 1400)
		// VC 2003 workaround: compiler generates bad code for 64K tables
		tableSize = 2*1024;
#endif
	}

	m_buffer.resize(3*REQUIRED_BLOCKSIZE + tableSize);
	byte *table = MulTable();
	byte *hashKey = HashKey();
	memset(hashKey, 0, REQUIRED_BLOCKSIZE);
	blockCipher.ProcessBlock(hashKey);

#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
	if (HasCLMUL())
	{
		const __m128i r = s_clmulConstants[0];
		__m128i h0 = _mm_shuffle_epi8(_mm_load_si128((__m128i *)hashKey), s_clmulConstants[1]);
		__m128i h = h0;

		for (i=0; i<tableSize; i+=32)
		{
			__m128i h1 = CLMUL_GF_Mul(h, h0, r);
			_mm_storel_epi64((__m128i *)(table+i), h);
			_mm_storeu_si128((__m128i *)(table+i+16), h1);
			_mm_storeu_si128((__m128i *)(table+i+8), h);
			_mm_storel_epi64((__m128i *)(table+i+8), h1);
			h = CLMUL_GF_Mul(h1, h0, r);
		}

		return;
	}
#endif

	word64 V0, V1;
	typedef BlockGetAndPut<word64, BigEndian> Block;
	Block::Get(hashKey)(V0)(V1);

	if (tableSize == 64*1024)
	{
		for (i=0; i<128; i++)
		{
			k = i%8;
			Block::Put(NULL, table+(i/8)*256*16+(size_t(1)<<(11-k)))(V0)(V1);

			int x = (int)V1 & 1; 
			V1 = (V1>>1) | (V0<<63);
			V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
		}

		for (i=0; i<16; i++)
		{
			memset(table+i*256*16, 0, 16);
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
			if (HasSSE2())
				for (j=2; j<=0x80; j*=2)
					for (k=1; k<j; k++)
						SSE2_Xor16(table+i*256*16+(j+k)*16, table+i*256*16+j*16, table+i*256*16+k*16);
			else
#endif
				for (j=2; j<=0x80; j*=2)
					for (k=1; k<j; k++)
						Xor16(table+i*256*16+(j+k)*16, table+i*256*16+j*16, table+i*256*16+k*16);
		}
	}
	else
	{
		if (!s_reductionTableInitialized)
		{
			s_reductionTable[0] = 0;
			word16 x = 0x01c2;
			s_reductionTable[1] = ByteReverse(x);
			for (int i=2; i<=0x80; i*=2)
			{
				x <<= 1;
				s_reductionTable[i] = ByteReverse(x);
				for (int j=1; j<i; j++)
					s_reductionTable[i+j] = s_reductionTable[i] ^ s_reductionTable[j];
			}
			s_reductionTableInitialized = true;
		}

		for (i=0; i<128-24; i++)
		{
			k = i%32;
			if (k < 4)
				Block::Put(NULL, table+1024+(i/32)*256+(size_t(1)<<(7-k)))(V0)(V1);
			else if (k < 8)
				Block::Put(NULL, table+(i/32)*256+(size_t(1)<<(11-k)))(V0)(V1);

			int x = (int)V1 & 1; 
			V1 = (V1>>1) | (V0<<63);
			V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
		}

		for (i=0; i<4; i++)
		{
			memset(table+i*256, 0, 16);
			memset(table+1024+i*256, 0, 16);
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
			if (HasSSE2())
				for (j=2; j<=8; j*=2)
					for (k=1; k<j; k++)
					{
						SSE2_Xor16(table+i*256+(j+k)*16, table+i*256+j*16, table+i*256+k*16);
						SSE2_Xor16(table+1024+i*256+(j+k)*16, table+1024+i*256+j*16, table+1024+i*256+k*16);
					}
			else
#endif
				for (j=2; j<=8; j*=2)
					for (k=1; k<j; k++)
					{
						Xor16(table+i*256+(j+k)*16, table+i*256+j*16, table+i*256+k*16);
						Xor16(table+1024+i*256+(j+k)*16, table+1024+i*256+j*16, table+1024+i*256+k*16);
					}
		}
	}
}

inline void GCM_Base::ReverseHashBufferIfNeeded()
{
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
	if (HasCLMUL())
	{
		__m128i &x = *(__m128i *)HashBuffer();
		x = _mm_shuffle_epi8(x, s_clmulConstants[1]);
	}
#endif
}

void GCM_Base::Resync(const byte *iv, size_t len)
{
	BlockCipher &cipher = AccessBlockCipher();
	byte *hashBuffer = HashBuffer();

	if (len == 12)
	{
		memcpy(hashBuffer, iv, len);
		memset(hashBuffer+len, 0, 3);
		hashBuffer[len+3] = 1;
	}
	else
	{
		size_t origLen = len;
		memset(hashBuffer, 0, HASH_BLOCKSIZE);

		if (len >= HASH_BLOCKSIZE)
		{
			len = GCM_Base::AuthenticateBlocks(iv, len);
			iv += (origLen - len);
		}

		if (len > 0)
		{
			memcpy(m_buffer, iv, len);
			memset(m_buffer+len, 0, HASH_BLOCKSIZE-len);
			GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
		}

		PutBlock<word64, BigEndian, true>(NULL, m_buffer)(0)(origLen*8);
		GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);

		ReverseHashBufferIfNeeded();
	}

	if (m_state >= State_IVSet)
		m_ctr.Resynchronize(hashBuffer, REQUIRED_BLOCKSIZE);
	else
		m_ctr.SetCipherWithIV(cipher, hashBuffer);

	m_ctr.Seek(HASH_BLOCKSIZE);

	memset(hashBuffer, 0, HASH_BLOCKSIZE);
}

unsigned int GCM_Base::OptimalDataAlignment() const
{
	return 
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
		HasSSE2() ? 16 : 
#endif
		GetBlockCipher().OptimalDataAlignment();
}

#pragma warning(disable: 4731)	// frame pointer register 'ebp' modified by inline assembly code

#endif	// #ifndef CRYPTOPP_GENERATE_X64_MASM

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" {
void GCM_AuthenticateBlocks_2K(const byte *data, size_t blocks, word64 *hashBuffer, const word16 *reductionTable);
void GCM_AuthenticateBlocks_64K(const byte *data, size_t blocks, word64 *hashBuffer);
}
#endif

#ifndef CRYPTOPP_GENERATE_X64_MASM

size_t GCM_Base::AuthenticateBlocks(const byte *data, size_t len)
{
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
	if (HasCLMUL())
	{
		const __m128i *table = (const __m128i *)MulTable();
		__m128i x = _mm_load_si128((__m128i *)HashBuffer());
		const __m128i r = s_clmulConstants[0], bswapMask = s_clmulConstants[1], bswapMask2 = s_clmulConstants[2];

		while (len >= 16)
		{
			size_t s = UnsignedMin(len/16, s_clmulTableSizeInBlocks), i=0;
			__m128i d, d2 = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-1)*16)), bswapMask2);;
			__m128i c0 = _mm_setzero_si128();
			__m128i c1 = _mm_setzero_si128();
			__m128i c2 = _mm_setzero_si128();

			while (true)
			{
				__m128i h0 = _mm_load_si128(table+i);
				__m128i h1 = _mm_load_si128(table+i+1);
				__m128i h01 = _mm_xor_si128(h0, h1);

				if (++i == s)
				{
					d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)data), bswapMask);
					d = _mm_xor_si128(d, x);
					c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0));
					c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 1));
					d = _mm_xor_si128(d, _mm_shuffle_epi32(d, _MM_SHUFFLE(1, 0, 3, 2)));
					c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0));
					break;
				}

				d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-i)*16-8)), bswapMask2);
				c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d2, h0, 1));
				c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 1));
				d2 = _mm_xor_si128(d2, d);
				c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d2, h01, 1));

				if (++i == s)
				{
					d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)data), bswapMask);
					d = _mm_xor_si128(d, x);
					c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0x10));
					c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 0x11));
					d = _mm_xor_si128(d, _mm_shuffle_epi32(d, _MM_SHUFFLE(1, 0, 3, 2)));
					c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0x10));
					break;
				}

				d2 = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-i)*16-8)), bswapMask);
				c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0x10));
				c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d2, h1, 0x10));
				d = _mm_xor_si128(d, d2);
				c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0x10));
			}
			data += s*16;
			len -= s*16;

			c1 = _mm_xor_si128(_mm_xor_si128(c1, c0), c2);
			x = CLMUL_Reduce(c0, c1, c2, r);
		}

		_mm_store_si128((__m128i *)HashBuffer(), x);
		return len;
	}
#endif

	typedef BlockGetAndPut<word64, NativeByteOrder> Block;
	word64 *hashBuffer = (word64 *)HashBuffer();

	switch (2*(m_buffer.size()>=64*1024)
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
		+ HasSSE2()
#endif
		)
	{
	case 0:		// non-SSE2 and 2K tables
		{
		byte *table = MulTable();
		word64 x0 = hashBuffer[0], x1 = hashBuffer[1];

		do
		{
			word64 y0, y1, a0, a1, b0, b1, c0, c1, d0, d1;
			Block::Get(data)(y0)(y1);
			x0 ^= y0;
			x1 ^= y1;

			data += HASH_BLOCKSIZE;
			len -= HASH_BLOCKSIZE;

			#define READ_TABLE_WORD64_COMMON(a, b, c, d)	*(word64 *)(table+(a*1024)+(b*256)+c+d*8)

			#ifdef IS_LITTLE_ENDIAN
				#if CRYPTOPP_BOOL_SLOW_WORD64
					word32 z0 = (word32)x0;
					word32 z1 = (word32)(x0>>32);
					word32 z2 = (word32)x1;
					word32 z3 = (word32)(x1>>32);
					#define READ_TABLE_WORD64(a, b, c, d, e)	READ_TABLE_WORD64_COMMON((d%2), c, (d?(z##c>>((d?d-1:0)*4))&0xf0:(z##c&0xf)<<4), e)
				#else
					#define READ_TABLE_WORD64(a, b, c, d, e)	READ_TABLE_WORD64_COMMON((d%2), c, ((d+8*b)?(x##a>>(((d+8*b)?(d+8*b)-1:1)*4))&0xf0:(x##a&0xf)<<4), e)
				#endif
				#define GF_MOST_SIG_8BITS(a) (a##1 >> 7*8)
				#define GF_SHIFT_8(a) a##1 = (a##1 << 8) ^ (a##0 >> 7*8); a##0 <<= 8;
			#else
				#define READ_TABLE_WORD64(a, b, c, d, e)	READ_TABLE_WORD64_COMMON((1-d%2), c, ((15-d-8*b)?(x##a>>(((15-d-8*b)?(15-d-8*b)-1:0)*4))&0xf0:(x##a&0xf)<<4), e)
				#define GF_MOST_SIG_8BITS(a) (a##1 & 0xff)
				#define GF_SHIFT_8(a) a##1 = (a##1 >> 8) ^ (a##0 << 7*8); a##0 >>= 8;
			#endif

			#define GF_MUL_32BY128(op, a, b, c)											\
				a0 op READ_TABLE_WORD64(a, b, c, 0, 0) ^ READ_TABLE_WORD64(a, b, c, 1, 0);\
				a1 op READ_TABLE_WORD64(a, b, c, 0, 1) ^ READ_TABLE_WORD64(a, b, c, 1, 1);\
				b0 op READ_TABLE_WORD64(a, b, c, 2, 0) ^ READ_TABLE_WORD64(a, b, c, 3, 0);\
				b1 op READ_TABLE_WORD64(a, b, c, 2, 1) ^ READ_TABLE_WORD64(a, b, c, 3, 1);\
				c0 op READ_TABLE_WORD64(a, b, c, 4, 0) ^ READ_TABLE_WORD64(a, b, c, 5, 0);\
				c1 op READ_TABLE_WORD64(a, b, c, 4, 1) ^ READ_TABLE_WORD64(a, b, c, 5, 1);\
				d0 op READ_TABLE_WORD64(a, b, c, 6, 0) ^ READ_TABLE_WORD64(a, b, c, 7, 0);\
				d1 op READ_TABLE_WORD64(a, b, c, 6, 1) ^ READ_TABLE_WORD64(a, b, c, 7, 1);\

			GF_MUL_32BY128(=, 0, 0, 0)
			GF_MUL_32BY128(^=, 0, 1, 1)
			GF_MUL_32BY128(^=, 1, 0, 2)
			GF_MUL_32BY128(^=, 1, 1, 3)

			word32 r = (word32)s_reductionTable[GF_MOST_SIG_8BITS(d)] << 16;
			GF_SHIFT_8(d)
			c0 ^= d0; c1 ^= d1;
			r ^= (word32)s_reductionTable[GF_MOST_SIG_8BITS(c)] << 8;
			GF_SHIFT_8(c)
			b0 ^= c0; b1 ^= c1;
			r ^= s_reductionTable[GF_MOST_SIG_8BITS(b)];
			GF_SHIFT_8(b)
			a0 ^= b0; a1 ^= b1;
			a0 ^= ConditionalByteReverse<word64>(LITTLE_ENDIAN_ORDER, r);
			x0 = a0; x1 = a1;
		}
		while (len >= HASH_BLOCKSIZE);

		hashBuffer[0] = x0; hashBuffer[1] = x1;
		return len;
		}

	case 2:		// non-SSE2 and 64K tables
		{
		byte *table = MulTable();
		word64 x0 = hashBuffer[0], x1 = hashBuffer[1];

		do
		{
			word64 y0, y1, a0, a1;
			Block::Get(data)(y0)(y1);
			x0 ^= y0;
			x1 ^= y1;

			data += HASH_BLOCKSIZE;
			len -= HASH_BLOCKSIZE;

			#undef READ_TABLE_WORD64_COMMON
			#undef READ_TABLE_WORD64

			#define READ_TABLE_WORD64_COMMON(a, c, d)	*(word64 *)(table+(a)*256*16+(c)+(d)*8)

			#ifdef IS_LITTLE_ENDIAN
				#if CRYPTOPP_BOOL_SLOW_WORD64
					word32 z0 = (word32)x0;
					word32 z1 = (word32)(x0>>32);
					word32 z2 = (word32)x1;
					word32 z3 = (word32)(x1>>32);
					#define READ_TABLE_WORD64(b, c, d, e)	READ_TABLE_WORD64_COMMON(c*4+d, (d?(z##c>>((d?d:1)*8-4))&0xff0:(z##c&0xff)<<4), e)
				#else
					#define READ_TABLE_WORD64(b, c, d, e)	READ_TABLE_WORD64_COMMON(c*4+d, ((d+4*(c%2))?(x##b>>(((d+4*(c%2))?(d+4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
				#endif
			#else
				#define READ_TABLE_WORD64(b, c, d, e)	READ_TABLE_WORD64_COMMON(c*4+d, ((7-d-4*(c%2))?(x##b>>(((7-d-4*(c%2))?(7-d-4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
			#endif

			#define GF_MUL_8BY128(op, b, c, d)		\
				a0 op READ_TABLE_WORD64(b, c, d, 0);\
				a1 op READ_TABLE_WORD64(b, c, d, 1);\

			GF_MUL_8BY128(=, 0, 0, 0)
			GF_MUL_8BY128(^=, 0, 0, 1)
			GF_MUL_8BY128(^=, 0, 0, 2)
			GF_MUL_8BY128(^=, 0, 0, 3)
			GF_MUL_8BY128(^=, 0, 1, 0)
			GF_MUL_8BY128(^=, 0, 1, 1)
			GF_MUL_8BY128(^=, 0, 1, 2)
			GF_MUL_8BY128(^=, 0, 1, 3)
			GF_MUL_8BY128(^=, 1, 2, 0)
			GF_MUL_8BY128(^=, 1, 2, 1)
			GF_MUL_8BY128(^=, 1, 2, 2)
			GF_MUL_8BY128(^=, 1, 2, 3)
			GF_MUL_8BY128(^=, 1, 3, 0)
			GF_MUL_8BY128(^=, 1, 3, 1)
			GF_MUL_8BY128(^=, 1, 3, 2)
			GF_MUL_8BY128(^=, 1, 3, 3)

			x0 = a0; x1 = a1;
		}
		while (len >= HASH_BLOCKSIZE);

		hashBuffer[0] = x0; hashBuffer[1] = x1;
		return len;
		}
#endif	// #ifndef CRYPTOPP_GENERATE_X64_MASM

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
	case 1:		// SSE2 and 2K tables
		GCM_AuthenticateBlocks_2K(data, len/16, hashBuffer, s_reductionTable);
		return len % 16;
	case 3:		// SSE2 and 64K tables
		GCM_AuthenticateBlocks_64K(data, len/16, hashBuffer);
		return len % 16;
#endif

#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
	case 1:		// SSE2 and 2K tables
		{
		#ifdef __GNUC__
			__asm__ __volatile__
			(
			".intel_syntax noprefix;"
		#elif defined(CRYPTOPP_GENERATE_X64_MASM)
			ALIGN   8
			GCM_AuthenticateBlocks_2K	PROC FRAME
			rex_push_reg rsi
			push_reg rdi
			push_reg rbx
			.endprolog
			mov rsi, r8
			mov r11, r9
		#else
			AS2(	mov		WORD_REG(cx), data			)
			AS2(	mov		WORD_REG(dx), len			)
			AS2(	mov		WORD_REG(si), hashBuffer	)
			AS2(	shr		WORD_REG(dx), 4				)
		#endif

		AS_PUSH_IF86(	bx)
		AS_PUSH_IF86(	bp)

		#ifdef __GNUC__
			AS2(	mov		AS_REG_7, WORD_REG(di))
		#elif CRYPTOPP_BOOL_X86
			AS2(	lea		AS_REG_7, s_reductionTable)
		#endif

		AS2(	movdqa	xmm0, [WORD_REG(si)]			)

		#define MUL_TABLE_0 WORD_REG(si) + 32
		#define MUL_TABLE_1 WORD_REG(si) + 32 + 1024
		#define RED_TABLE AS_REG_7

		ASL(0)
		AS2(	movdqu	xmm4, [WORD_REG(cx)]			)
		AS2(	pxor	xmm0, xmm4						)

		AS2(	movd	ebx, xmm0						)
		AS2(	mov		eax, AS_HEX(f0f0f0f0)			)
		AS2(	and		eax, ebx						)
		AS2(	shl		ebx, 4							)
		AS2(	and		ebx, AS_HEX(f0f0f0f0)			)
		AS2(	movzx	edi, ah							)
		AS2(	movdqa	xmm5, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]	)
		AS2(	movzx	edi, al					)
		AS2(	movdqa	xmm4, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]	)
		AS2(	shr		eax, 16							)
		AS2(	movzx	edi, ah					)
		AS2(	movdqa	xmm3, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]	)
		AS2(	movzx	edi, al					)
		AS2(	movdqa	xmm2, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]	)

		#define SSE2_MUL_32BITS(i)											\
			AS2(	psrldq	xmm0, 4											)\
			AS2(	movd	eax, xmm0										)\
			AS2(	and		eax, AS_HEX(f0f0f0f0)									)\
			AS2(	movzx	edi, bh											)\
			AS2(	pxor	xmm5, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]	)\
			AS2(	movzx	edi, bl											)\
			AS2(	pxor	xmm4, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]	)\
			AS2(	shr		ebx, 16											)\
			AS2(	movzx	edi, bh											)\
			AS2(	pxor	xmm3, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]	)\
			AS2(	movzx	edi, bl											)\
			AS2(	pxor	xmm2, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]	)\
			AS2(	movd	ebx, xmm0										)\
			AS2(	shl		ebx, 4											)\
			AS2(	and		ebx, AS_HEX(f0f0f0f0)									)\
			AS2(	movzx	edi, ah											)\
			AS2(	pxor	xmm5, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]		)\
			AS2(	movzx	edi, al											)\
			AS2(	pxor	xmm4, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]		)\
			AS2(	shr		eax, 16											)\
			AS2(	movzx	edi, ah											)\
			AS2(	pxor	xmm3, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]		)\
			AS2(	movzx	edi, al											)\
			AS2(	pxor	xmm2, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]		)\

		SSE2_MUL_32BITS(1)
		SSE2_MUL_32BITS(2)
		SSE2_MUL_32BITS(3)

		AS2(	movzx	edi, bh					)
		AS2(	pxor	xmm5, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]	)
		AS2(	movzx	edi, bl					)
		AS2(	pxor	xmm4, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]	)
		AS2(	shr		ebx, 16						)
		AS2(	movzx	edi, bh					)
		AS2(	pxor	xmm3, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]	)
		AS2(	movzx	edi, bl					)
		AS2(	pxor	xmm2, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]	)

		AS2(	movdqa	xmm0, xmm3						)
		AS2(	pslldq	xmm3, 1							)
		AS2(	pxor	xmm2, xmm3						)
		AS2(	movdqa	xmm1, xmm2						)
		AS2(	pslldq	xmm2, 1							)
		AS2(	pxor	xmm5, xmm2						)

		AS2(	psrldq	xmm0, 15						)
		AS2(	movd	WORD_REG(di), xmm0					)
		AS2(	movzx	eax, WORD PTR [RED_TABLE + WORD_REG(di)*2]	)
		AS2(	shl		eax, 8							)

		AS2(	movdqa	xmm0, xmm5						)
		AS2(	pslldq	xmm5, 1							)
		AS2(	pxor	xmm4, xmm5						)

		AS2(	psrldq	xmm1, 15						)
		AS2(	movd	WORD_REG(di), xmm1					)
		AS2(	xor		ax, WORD PTR [RED_TABLE + WORD_REG(di)*2]	)
		AS2(	shl		eax, 8							)

		AS2(	psrldq	xmm0, 15						)
		AS2(	movd	WORD_REG(di), xmm0					)
		AS2(	xor		ax, WORD PTR [RED_TABLE + WORD_REG(di)*2]	)

		AS2(	movd	xmm0, eax						)
		AS2(	pxor	xmm0, xmm4						)

		AS2(	add		WORD_REG(cx), 16					)
		AS2(	sub		WORD_REG(dx), 1						)
		ASJ(	jnz,	0, b							)
		AS2(	movdqa	[WORD_REG(si)], xmm0				)

		AS_POP_IF86(	bp)
		AS_POP_IF86(	bx)

		#ifdef __GNUC__
				".att_syntax prefix;"
					: 
					: "c" (data), "d" (len/16), "S" (hashBuffer), "D" (s_reductionTable)
					: "memory", "cc", "%eax"
			#if CRYPTOPP_BOOL_X64
					, "%ebx", "%r11"
			#endif
				);
		#elif defined(CRYPTOPP_GENERATE_X64_MASM)
			pop rbx
			pop rdi
			pop rsi
			ret
			GCM_AuthenticateBlocks_2K ENDP
		#endif

		return len%16;
		}
	case 3:		// SSE2 and 64K tables
		{
		#ifdef __GNUC__
			__asm__ __volatile__
			(
			".intel_syntax noprefix;"
		#elif defined(CRYPTOPP_GENERATE_X64_MASM)
			ALIGN   8
			GCM_AuthenticateBlocks_64K	PROC FRAME
			rex_push_reg rsi
			push_reg rdi
			.endprolog
			mov rsi, r8
		#else
			AS2(	mov		WORD_REG(cx), data			)
			AS2(	mov		WORD_REG(dx), len			)
			AS2(	mov		WORD_REG(si), hashBuffer	)
			AS2(	shr		WORD_REG(dx), 4				)
		#endif

		AS2(	movdqa	xmm0, [WORD_REG(si)]				)

		#undef MUL_TABLE
		#define MUL_TABLE(i,j) WORD_REG(si) + 32 + (i*4+j)*256*16

		ASL(1)
		AS2(	movdqu	xmm1, [WORD_REG(cx)]				)
		AS2(	pxor	xmm1, xmm0						)
		AS2(	pxor	xmm0, xmm0						)

		#undef SSE2_MUL_32BITS
		#define SSE2_MUL_32BITS(i)								\
			AS2(	movd	eax, xmm1							)\
			AS2(	psrldq	xmm1, 4								)\
			AS2(	movzx	edi, al						)\
			AS2(	add		WORD_REG(di), WORD_REG(di)					)\
			AS2(	pxor	xmm0, [MUL_TABLE(i,0) + WORD_REG(di)*8]	)\
			AS2(	movzx	edi, ah						)\
			AS2(	add		WORD_REG(di), WORD_REG(di)					)\
			AS2(	pxor	xmm0, [MUL_TABLE(i,1) + WORD_REG(di)*8]	)\
			AS2(	shr		eax, 16								)\
			AS2(	movzx	edi, al						)\
			AS2(	add		WORD_REG(di), WORD_REG(di)					)\
			AS2(	pxor	xmm0, [MUL_TABLE(i,2) + WORD_REG(di)*8]	)\
			AS2(	movzx	edi, ah						)\
			AS2(	add		WORD_REG(di), WORD_REG(di)					)\
			AS2(	pxor	xmm0, [MUL_TABLE(i,3) + WORD_REG(di)*8]	)\

		SSE2_MUL_32BITS(0)
		SSE2_MUL_32BITS(1)
		SSE2_MUL_32BITS(2)
		SSE2_MUL_32BITS(3)

		AS2(	add		WORD_REG(cx), 16					)
		AS2(	sub		WORD_REG(dx), 1						)
		ASJ(	jnz,	1, b							)
		AS2(	movdqa	[WORD_REG(si)], xmm0				)

		#ifdef __GNUC__
				".att_syntax prefix;"
					: 
					: "c" (data), "d" (len/16), "S" (hashBuffer)
					: "memory", "cc", "%edi", "%eax"
				);
		#elif defined(CRYPTOPP_GENERATE_X64_MASM)
			pop rdi
			pop rsi
			ret
			GCM_AuthenticateBlocks_64K ENDP
		#endif

		return len%16;
		}
#endif
#ifndef CRYPTOPP_GENERATE_X64_MASM
	}

	return len%16;
}

void GCM_Base::AuthenticateLastHeaderBlock()
{
	if (m_bufferedDataLength > 0)
	{
		memset(m_buffer+m_bufferedDataLength, 0, HASH_BLOCKSIZE-m_bufferedDataLength);
		m_bufferedDataLength = 0;
		GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
	}
}

void GCM_Base::AuthenticateLastConfidentialBlock()
{
	GCM_Base::AuthenticateLastHeaderBlock();
	PutBlock<word64, BigEndian, true>(NULL, m_buffer)(m_totalHeaderLength*8)(m_totalMessageLength*8);
	GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
}

void GCM_Base::AuthenticateLastFooterBlock(byte *mac, size_t macSize)
{
	m_ctr.Seek(0);
	ReverseHashBufferIfNeeded();
	m_ctr.ProcessData(mac, HashBuffer(), macSize);
}

NAMESPACE_END

#endif	// #ifndef CRYPTOPP_GENERATE_X64_MASM
#endif