Blame view

Socket/cryptopp/gcm.cpp 24.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
// gcm.cpp - written and placed in the public domain by Wei Dai

// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM gcm.cpp" to generate MASM code

#include "pch.h"

#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM

#include "gcm.h"
#include "cpu.h"

NAMESPACE_BEGIN(CryptoPP)

word16 GCM_Base::s_reductionTable[256];
volatile bool GCM_Base::s_reductionTableInitialized = false;

void GCM_Base::GCTR::IncrementCounterBy256()
{
	IncrementCounterByOne(m_counterArray+BlockSize()-4, 3);
}

#if 0
// preserved for testing
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c)
{
	word64 Z0=0, Z1=0, V0, V1;

	typedef BlockGetAndPut<word64, BigEndian> Block;
	Block::Get(a)(V0)(V1);

	for (int i=0; i<16; i++) 
	{
		for (int j=0x80; j!=0; j>>=1)
		{
			int x = b[i] & j;
			Z0 ^= x ? V0 : 0;
			Z1 ^= x ? V1 : 0;
			x = (int)V1 & 1;
			V1 = (V1>>1) | (V0<<63);
			V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
		}
	}
	Block::Put(NULL, c)(Z0)(Z1);
}

__m128i _mm_clmulepi64_si128(const __m128i &a, const __m128i &b, int i)
{
	word64 A[1] = {ByteReverse(((word64*)&a)[i&1])};
	word64 B[1] = {ByteReverse(((word64*)&b)[i>>4])};

	PolynomialMod2 pa((byte *)A, 8);
	PolynomialMod2 pb((byte *)B, 8);
	PolynomialMod2 c = pa*pb;

	__m128i output;
	for (int i=0; i<16; i++)
		((byte *)&output)[i] = c.GetByte(i);
	return output;
}
#endif

#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
inline static void SSE2_Xor16(byte *a, const byte *b, const byte *c)
{
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
	*(__m128i *)a = _mm_xor_si128(*(__m128i *)b, *(__m128i *)c);
#else
	asm ("movdqa %1, %%xmm0; pxor %2, %%xmm0; movdqa %%xmm0, %0;" : "=m" (a[0]) : "m"(b[0]), "m"(c[0]));
#endif
}
#endif

inline static void Xor16(byte *a, const byte *b, const byte *c)
{
	((word64 *)a)[0] = ((word64 *)b)[0] ^ ((word64 *)c)[0];
	((word64 *)a)[1] = ((word64 *)b)[1] ^ ((word64 *)c)[1];
}

#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
static CRYPTOPP_ALIGN_DATA(16) const word64 s_clmulConstants64[] = {
	W64LIT(0xe100000000000000), W64LIT(0xc200000000000000),
	W64LIT(0x08090a0b0c0d0e0f), W64LIT(0x0001020304050607),
	W64LIT(0x0001020304050607), W64LIT(0x08090a0b0c0d0e0f)};
static const __m128i *s_clmulConstants = (const __m128i *)s_clmulConstants64;
static const unsigned int s_clmulTableSizeInBlocks = 8;

inline __m128i CLMUL_Reduce(__m128i c0, __m128i c1, __m128i c2, const __m128i &r)
{
	/* 
	The polynomial to be reduced is c0 * x^128 + c1 * x^64 + c2. c0t below refers to the most 
	significant half of c0 as a polynomial, which, due to GCM's bit reflection, are in the
	rightmost bit positions, and the lowest byte addresses.

	c1 ^= c0t * 0xc200000000000000
	c2t ^= c0t
	t = shift (c1t ^ c0b) left 1 bit
	c2 ^= t * 0xe100000000000000
	c2t ^= c1b
	shift c2 left 1 bit and xor in lowest bit of c1t
	*/
#if 0	// MSVC 2010 workaround: see http://connect.microsoft.com/VisualStudio/feedback/details/575301
	c2 = _mm_xor_si128(c2, _mm_move_epi64(c0));
#else
	c1 = _mm_xor_si128(c1, _mm_slli_si128(c0, 8));
#endif
	c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(c0, r, 0x10));
	c0 = _mm_srli_si128(c0, 8);
	c0 = _mm_xor_si128(c0, c1);
	c0 = _mm_slli_epi64(c0, 1);
	c0 = _mm_clmulepi64_si128(c0, r, 0);
	c2 = _mm_xor_si128(c2, c0);
	c2 = _mm_xor_si128(c2, _mm_srli_si128(c1, 8));
	c1 = _mm_unpacklo_epi64(c1, c2);
	c1 = _mm_srli_epi64(c1, 63);
	c2 = _mm_slli_epi64(c2, 1);
	return _mm_xor_si128(c2, c1);
}

inline __m128i CLMUL_GF_Mul(const __m128i &x, const __m128i &h, const __m128i &r)
{
	__m128i c0 = _mm_clmulepi64_si128(x,h,0);
	__m128i c1 = _mm_xor_si128(_mm_clmulepi64_si128(x,h,1), _mm_clmulepi64_si128(x,h,0x10));
	__m128i c2 = _mm_clmulepi64_si128(x,h,0x11);

	return CLMUL_Reduce(c0, c1, c2, r);
}
#endif

void GCM_Base::SetKeyWithoutResync(const byte *userKey, size_t keylength, const NameValuePairs &params)
{
	BlockCipher &blockCipher = AccessBlockCipher();
	blockCipher.SetKey(userKey, keylength, params);

	if (blockCipher.BlockSize() != REQUIRED_BLOCKSIZE)
		throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not 16");

	int tableSize, i, j, k;

#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
	if (HasCLMUL())
	{
		params.GetIntValue(Name::TableSize(), tableSize);	// avoid "parameter not used" error
		tableSize = s_clmulTableSizeInBlocks * REQUIRED_BLOCKSIZE;
	}
	else
#endif
	{
		if (params.GetIntValue(Name::TableSize(), tableSize))
			tableSize = (tableSize >= 64*1024) ? 64*1024 : 2*1024;
		else
			tableSize = (GetTablesOption() == GCM_64K_Tables) ? 64*1024 : 2*1024;

#if defined(_MSC_VER) && (_MSC_VER >= 1300 && _MSC_VER < 1400)
		// VC 2003 workaround: compiler generates bad code for 64K tables
		tableSize = 2*1024;
#endif
	}

	m_buffer.resize(3*REQUIRED_BLOCKSIZE + tableSize);
	byte *table = MulTable();
	byte *hashKey = HashKey();
	memset(hashKey, 0, REQUIRED_BLOCKSIZE);
	blockCipher.ProcessBlock(hashKey);

#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
	if (HasCLMUL())
	{
		const __m128i r = s_clmulConstants[0];
		__m128i h0 = _mm_shuffle_epi8(_mm_load_si128((__m128i *)hashKey), s_clmulConstants[1]);
		__m128i h = h0;

		for (i=0; i<tableSize; i+=32)
		{
			__m128i h1 = CLMUL_GF_Mul(h, h0, r);
			_mm_storel_epi64((__m128i *)(table+i), h);
			_mm_storeu_si128((__m128i *)(table+i+16), h1);
			_mm_storeu_si128((__m128i *)(table+i+8), h);
			_mm_storel_epi64((__m128i *)(table+i+8), h1);
			h = CLMUL_GF_Mul(h1, h0, r);
		}

		return;
	}
#endif

	word64 V0, V1;
	typedef BlockGetAndPut<word64, BigEndian> Block;
	Block::Get(hashKey)(V0)(V1);

	if (tableSize == 64*1024)
	{
		for (i=0; i<128; i++)
		{
			k = i%8;
			Block::Put(NULL, table+(i/8)*256*16+(size_t(1)<<(11-k)))(V0)(V1);

			int x = (int)V1 & 1; 
			V1 = (V1>>1) | (V0<<63);
			V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
		}

		for (i=0; i<16; i++)
		{
			memset(table+i*256*16, 0, 16);
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
			if (HasSSE2())
				for (j=2; j<=0x80; j*=2)
					for (k=1; k<j; k++)
						SSE2_Xor16(table+i*256*16+(j+k)*16, table+i*256*16+j*16, table+i*256*16+k*16);
			else
#endif
				for (j=2; j<=0x80; j*=2)
					for (k=1; k<j; k++)
						Xor16(table+i*256*16+(j+k)*16, table+i*256*16+j*16, table+i*256*16+k*16);
		}
	}
	else
	{
		if (!s_reductionTableInitialized)
		{
			s_reductionTable[0] = 0;
			word16 x = 0x01c2;
			s_reductionTable[1] = ByteReverse(x);
			for (int i=2; i<=0x80; i*=2)
			{
				x <<= 1;
				s_reductionTable[i] = ByteReverse(x);
				for (int j=1; j<i; j++)
					s_reductionTable[i+j] = s_reductionTable[i] ^ s_reductionTable[j];
			}
			s_reductionTableInitialized = true;
		}

		for (i=0; i<128-24; i++)
		{
			k = i%32;
			if (k < 4)
				Block::Put(NULL, table+1024+(i/32)*256+(size_t(1)<<(7-k)))(V0)(V1);
			else if (k < 8)
				Block::Put(NULL, table+(i/32)*256+(size_t(1)<<(11-k)))(V0)(V1);

			int x = (int)V1 & 1; 
			V1 = (V1>>1) | (V0<<63);
			V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
		}

		for (i=0; i<4; i++)
		{
			memset(table+i*256, 0, 16);
			memset(table+1024+i*256, 0, 16);
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
			if (HasSSE2())
				for (j=2; j<=8; j*=2)
					for (k=1; k<j; k++)
					{
						SSE2_Xor16(table+i*256+(j+k)*16, table+i*256+j*16, table+i*256+k*16);
						SSE2_Xor16(table+1024+i*256+(j+k)*16, table+1024+i*256+j*16, table+1024+i*256+k*16);
					}
			else
#endif
				for (j=2; j<=8; j*=2)
					for (k=1; k<j; k++)
					{
						Xor16(table+i*256+(j+k)*16, table+i*256+j*16, table+i*256+k*16);
						Xor16(table+1024+i*256+(j+k)*16, table+1024+i*256+j*16, table+1024+i*256+k*16);
					}
		}
	}
}

inline void GCM_Base::ReverseHashBufferIfNeeded()
{
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
	if (HasCLMUL())
	{
		__m128i &x = *(__m128i *)HashBuffer();
		x = _mm_shuffle_epi8(x, s_clmulConstants[1]);
	}
#endif
}

void GCM_Base::Resync(const byte *iv, size_t len)
{
	BlockCipher &cipher = AccessBlockCipher();
	byte *hashBuffer = HashBuffer();

	if (len == 12)
	{
		memcpy(hashBuffer, iv, len);
		memset(hashBuffer+len, 0, 3);
		hashBuffer[len+3] = 1;
	}
	else
	{
		size_t origLen = len;
		memset(hashBuffer, 0, HASH_BLOCKSIZE);

		if (len >= HASH_BLOCKSIZE)
		{
			len = GCM_Base::AuthenticateBlocks(iv, len);
			iv += (origLen - len);
		}

		if (len > 0)
		{
			memcpy(m_buffer, iv, len);
			memset(m_buffer+len, 0, HASH_BLOCKSIZE-len);
			GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
		}

		PutBlock<word64, BigEndian, true>(NULL, m_buffer)(0)(origLen*8);
		GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);

		ReverseHashBufferIfNeeded();
	}

	if (m_state >= State_IVSet)
		m_ctr.Resynchronize(hashBuffer, REQUIRED_BLOCKSIZE);
	else
		m_ctr.SetCipherWithIV(cipher, hashBuffer);

	m_ctr.Seek(HASH_BLOCKSIZE);

	memset(hashBuffer, 0, HASH_BLOCKSIZE);
}

unsigned int GCM_Base::OptimalDataAlignment() const
{
	return 
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
		HasSSE2() ? 16 : 
#endif
		GetBlockCipher().OptimalDataAlignment();
}

#pragma warning(disable: 4731)	// frame pointer register 'ebp' modified by inline assembly code

#endif	// #ifndef CRYPTOPP_GENERATE_X64_MASM

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" {
void GCM_AuthenticateBlocks_2K(const byte *data, size_t blocks, word64 *hashBuffer, const word16 *reductionTable);
void GCM_AuthenticateBlocks_64K(const byte *data, size_t blocks, word64 *hashBuffer);
}
#endif

#ifndef CRYPTOPP_GENERATE_X64_MASM

size_t GCM_Base::AuthenticateBlocks(const byte *data, size_t len)
{
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
	if (HasCLMUL())
	{
		const __m128i *table = (const __m128i *)MulTable();
		__m128i x = _mm_load_si128((__m128i *)HashBuffer());
		const __m128i r = s_clmulConstants[0], bswapMask = s_clmulConstants[1], bswapMask2 = s_clmulConstants[2];

		while (len >= 16)
		{
			size_t s = UnsignedMin(len/16, s_clmulTableSizeInBlocks), i=0;
			__m128i d, d2 = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-1)*16)), bswapMask2);;
			__m128i c0 = _mm_setzero_si128();
			__m128i c1 = _mm_setzero_si128();
			__m128i c2 = _mm_setzero_si128();

			while (true)
			{
				__m128i h0 = _mm_load_si128(table+i);
				__m128i h1 = _mm_load_si128(table+i+1);
				__m128i h01 = _mm_xor_si128(h0, h1);

				if (++i == s)
				{
					d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)data), bswapMask);
					d = _mm_xor_si128(d, x);
					c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0));
					c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 1));
					d = _mm_xor_si128(d, _mm_shuffle_epi32(d, _MM_SHUFFLE(1, 0, 3, 2)));
					c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0));
					break;
				}

				d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-i)*16-8)), bswapMask2);
				c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d2, h0, 1));
				c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 1));
				d2 = _mm_xor_si128(d2, d);
				c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d2, h01, 1));

				if (++i == s)
				{
					d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)data), bswapMask);
					d = _mm_xor_si128(d, x);
					c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0x10));
					c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 0x11));
					d = _mm_xor_si128(d, _mm_shuffle_epi32(d, _MM_SHUFFLE(1, 0, 3, 2)));
					c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0x10));
					break;
				}

				d2 = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-i)*16-8)), bswapMask);
				c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0x10));
				c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d2, h1, 0x10));
				d = _mm_xor_si128(d, d2);
				c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0x10));
			}
			data += s*16;
			len -= s*16;

			c1 = _mm_xor_si128(_mm_xor_si128(c1, c0), c2);
			x = CLMUL_Reduce(c0, c1, c2, r);
		}

		_mm_store_si128((__m128i *)HashBuffer(), x);
		return len;
	}
#endif

	typedef BlockGetAndPut<word64, NativeByteOrder> Block;
	word64 *hashBuffer = (word64 *)HashBuffer();

	switch (2*(m_buffer.size()>=64*1024)
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
		+ HasSSE2()
#endif
		)
	{
	case 0:		// non-SSE2 and 2K tables
		{
		byte *table = MulTable();
		word64 x0 = hashBuffer[0], x1 = hashBuffer[1];

		do
		{
			word64 y0, y1, a0, a1, b0, b1, c0, c1, d0, d1;
			Block::Get(data)(y0)(y1);
			x0 ^= y0;
			x1 ^= y1;

			data += HASH_BLOCKSIZE;
			len -= HASH_BLOCKSIZE;

			#define READ_TABLE_WORD64_COMMON(a, b, c, d)	*(word64 *)(table+(a*1024)+(b*256)+c+d*8)

			#ifdef IS_LITTLE_ENDIAN
				#if CRYPTOPP_BOOL_SLOW_WORD64
					word32 z0 = (word32)x0;
					word32 z1 = (word32)(x0>>32);
					word32 z2 = (word32)x1;
					word32 z3 = (word32)(x1>>32);
					#define READ_TABLE_WORD64(a, b, c, d, e)	READ_TABLE_WORD64_COMMON((d%2), c, (d?(z##c>>((d?d-1:0)*4))&0xf0:(z##c&0xf)<<4), e)
				#else
					#define READ_TABLE_WORD64(a, b, c, d, e)	READ_TABLE_WORD64_COMMON((d%2), c, ((d+8*b)?(x##a>>(((d+8*b)?(d+8*b)-1:1)*4))&0xf0:(x##a&0xf)<<4), e)
				#endif
				#define GF_MOST_SIG_8BITS(a) (a##1 >> 7*8)
				#define GF_SHIFT_8(a) a##1 = (a##1 << 8) ^ (a##0 >> 7*8); a##0 <<= 8;
			#else
				#define READ_TABLE_WORD64(a, b, c, d, e)	READ_TABLE_WORD64_COMMON((1-d%2), c, ((15-d-8*b)?(x##a>>(((15-d-8*b)?(15-d-8*b)-1:0)*4))&0xf0:(x##a&0xf)<<4), e)
				#define GF_MOST_SIG_8BITS(a) (a##1 & 0xff)
				#define GF_SHIFT_8(a) a##1 = (a##1 >> 8) ^ (a##0 << 7*8); a##0 >>= 8;
			#endif

			#define GF_MUL_32BY128(op, a, b, c)											\
				a0 op READ_TABLE_WORD64(a, b, c, 0, 0) ^ READ_TABLE_WORD64(a, b, c, 1, 0);\
				a1 op READ_TABLE_WORD64(a, b, c, 0, 1) ^ READ_TABLE_WORD64(a, b, c, 1, 1);\
				b0 op READ_TABLE_WORD64(a, b, c, 2, 0) ^ READ_TABLE_WORD64(a, b, c, 3, 0);\
				b1 op READ_TABLE_WORD64(a, b, c, 2, 1) ^ READ_TABLE_WORD64(a, b, c, 3, 1);\
				c0 op READ_TABLE_WORD64(a, b, c, 4, 0) ^ READ_TABLE_WORD64(a, b, c, 5, 0);\
				c1 op READ_TABLE_WORD64(a, b, c, 4, 1) ^ READ_TABLE_WORD64(a, b, c, 5, 1);\
				d0 op READ_TABLE_WORD64(a, b, c, 6, 0) ^ READ_TABLE_WORD64(a, b, c, 7, 0);\
				d1 op READ_TABLE_WORD64(a, b, c, 6, 1) ^ READ_TABLE_WORD64(a, b, c, 7, 1);\

			GF_MUL_32BY128(=, 0, 0, 0)
			GF_MUL_32BY128(^=, 0, 1, 1)
			GF_MUL_32BY128(^=, 1, 0, 2)
			GF_MUL_32BY128(^=, 1, 1, 3)

			word32 r = (word32)s_reductionTable[GF_MOST_SIG_8BITS(d)] << 16;
			GF_SHIFT_8(d)
			c0 ^= d0; c1 ^= d1;
			r ^= (word32)s_reductionTable[GF_MOST_SIG_8BITS(c)] << 8;
			GF_SHIFT_8(c)
			b0 ^= c0; b1 ^= c1;
			r ^= s_reductionTable[GF_MOST_SIG_8BITS(b)];
			GF_SHIFT_8(b)
			a0 ^= b0; a1 ^= b1;
			a0 ^= ConditionalByteReverse<word64>(LITTLE_ENDIAN_ORDER, r);
			x0 = a0; x1 = a1;
		}
		while (len >= HASH_BLOCKSIZE);

		hashBuffer[0] = x0; hashBuffer[1] = x1;
		return len;
		}

	case 2:		// non-SSE2 and 64K tables
		{
		byte *table = MulTable();
		word64 x0 = hashBuffer[0], x1 = hashBuffer[1];

		do
		{
			word64 y0, y1, a0, a1;
			Block::Get(data)(y0)(y1);
			x0 ^= y0;
			x1 ^= y1;

			data += HASH_BLOCKSIZE;
			len -= HASH_BLOCKSIZE;

			#undef READ_TABLE_WORD64_COMMON
			#undef READ_TABLE_WORD64

			#define READ_TABLE_WORD64_COMMON(a, c, d)	*(word64 *)(table+(a)*256*16+(c)+(d)*8)

			#ifdef IS_LITTLE_ENDIAN
				#if CRYPTOPP_BOOL_SLOW_WORD64
					word32 z0 = (word32)x0;
					word32 z1 = (word32)(x0>>32);
					word32 z2 = (word32)x1;
					word32 z3 = (word32)(x1>>32);
					#define READ_TABLE_WORD64(b, c, d, e)	READ_TABLE_WORD64_COMMON(c*4+d, (d?(z##c>>((d?d:1)*8-4))&0xff0:(z##c&0xff)<<4), e)
				#else
					#define READ_TABLE_WORD64(b, c, d, e)	READ_TABLE_WORD64_COMMON(c*4+d, ((d+4*(c%2))?(x##b>>(((d+4*(c%2))?(d+4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
				#endif
			#else
				#define READ_TABLE_WORD64(b, c, d, e)	READ_TABLE_WORD64_COMMON(c*4+d, ((7-d-4*(c%2))?(x##b>>(((7-d-4*(c%2))?(7-d-4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
			#endif

			#define GF_MUL_8BY128(op, b, c, d)		\
				a0 op READ_TABLE_WORD64(b, c, d, 0);\
				a1 op READ_TABLE_WORD64(b, c, d, 1);\

			GF_MUL_8BY128(=, 0, 0, 0)
			GF_MUL_8BY128(^=, 0, 0, 1)
			GF_MUL_8BY128(^=, 0, 0, 2)
			GF_MUL_8BY128(^=, 0, 0, 3)
			GF_MUL_8BY128(^=, 0, 1, 0)
			GF_MUL_8BY128(^=, 0, 1, 1)
			GF_MUL_8BY128(^=, 0, 1, 2)
			GF_MUL_8BY128(^=, 0, 1, 3)
			GF_MUL_8BY128(^=, 1, 2, 0)
			GF_MUL_8BY128(^=, 1, 2, 1)
			GF_MUL_8BY128(^=, 1, 2, 2)
			GF_MUL_8BY128(^=, 1, 2, 3)
			GF_MUL_8BY128(^=, 1, 3, 0)
			GF_MUL_8BY128(^=, 1, 3, 1)
			GF_MUL_8BY128(^=, 1, 3, 2)
			GF_MUL_8BY128(^=, 1, 3, 3)

			x0 = a0; x1 = a1;
		}
		while (len >= HASH_BLOCKSIZE);

		hashBuffer[0] = x0; hashBuffer[1] = x1;
		return len;
		}
#endif	// #ifndef CRYPTOPP_GENERATE_X64_MASM

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
	case 1:		// SSE2 and 2K tables
		GCM_AuthenticateBlocks_2K(data, len/16, hashBuffer, s_reductionTable);
		return len % 16;
	case 3:		// SSE2 and 64K tables
		GCM_AuthenticateBlocks_64K(data, len/16, hashBuffer);
		return len % 16;
#endif

#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
	case 1:		// SSE2 and 2K tables
		{
		#ifdef __GNUC__
			__asm__ __volatile__
			(
			".intel_syntax noprefix;"
		#elif defined(CRYPTOPP_GENERATE_X64_MASM)
			ALIGN   8
			GCM_AuthenticateBlocks_2K	PROC FRAME
			rex_push_reg rsi
			push_reg rdi
			push_reg rbx
			.endprolog
			mov rsi, r8
			mov r11, r9
		#else
			AS2(	mov		WORD_REG(cx), data			)
			AS2(	mov		WORD_REG(dx), len			)
			AS2(	mov		WORD_REG(si), hashBuffer	)
			AS2(	shr		WORD_REG(dx), 4				)
		#endif

		AS_PUSH_IF86(	bx)
		AS_PUSH_IF86(	bp)

		#ifdef __GNUC__
			AS2(	mov		AS_REG_7, WORD_REG(di))
		#elif CRYPTOPP_BOOL_X86
			AS2(	lea		AS_REG_7, s_reductionTable)
		#endif

		AS2(	movdqa	xmm0, [WORD_REG(si)]			)

		#define MUL_TABLE_0 WORD_REG(si) + 32
		#define MUL_TABLE_1 WORD_REG(si) + 32 + 1024
		#define RED_TABLE AS_REG_7

		ASL(0)
		AS2(	movdqu	xmm4, [WORD_REG(cx)]			)
		AS2(	pxor	xmm0, xmm4						)

		AS2(	movd	ebx, xmm0						)
		AS2(	mov		eax, AS_HEX(f0f0f0f0)			)
		AS2(	and		eax, ebx						)
		AS2(	shl		ebx, 4							)
		AS2(	and		ebx, AS_HEX(f0f0f0f0)			)
		AS2(	movzx	edi, ah							)
		AS2(	movdqa	xmm5, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]	)
		AS2(	movzx	edi, al					)
		AS2(	movdqa	xmm4, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]	)
		AS2(	shr		eax, 16							)
		AS2(	movzx	edi, ah					)
		AS2(	movdqa	xmm3, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]	)
		AS2(	movzx	edi, al					)
		AS2(	movdqa	xmm2, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)]	)

		#define SSE2_MUL_32BITS(i)											\
			AS2(	psrldq	xmm0, 4											)\
			AS2(	movd	eax, xmm0										)\
			AS2(	and		eax, AS_HEX(f0f0f0f0)									)\
			AS2(	movzx	edi, bh											)\
			AS2(	pxor	xmm5, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]	)\
			AS2(	movzx	edi, bl											)\
			AS2(	pxor	xmm4, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]	)\
			AS2(	shr		ebx, 16											)\
			AS2(	movzx	edi, bh											)\
			AS2(	pxor	xmm3, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]	)\
			AS2(	movzx	edi, bl											)\
			AS2(	pxor	xmm2, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)]	)\
			AS2(	movd	ebx, xmm0										)\
			AS2(	shl		ebx, 4											)\
			AS2(	and		ebx, AS_HEX(f0f0f0f0)									)\
			AS2(	movzx	edi, ah											)\
			AS2(	pxor	xmm5, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]		)\
			AS2(	movzx	edi, al											)\
			AS2(	pxor	xmm4, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]		)\
			AS2(	shr		eax, 16											)\
			AS2(	movzx	edi, ah											)\
			AS2(	pxor	xmm3, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]		)\
			AS2(	movzx	edi, al											)\
			AS2(	pxor	xmm2, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)]		)\

		SSE2_MUL_32BITS(1)
		SSE2_MUL_32BITS(2)
		SSE2_MUL_32BITS(3)

		AS2(	movzx	edi, bh					)
		AS2(	pxor	xmm5, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]	)
		AS2(	movzx	edi, bl					)
		AS2(	pxor	xmm4, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]	)
		AS2(	shr		ebx, 16						)
		AS2(	movzx	edi, bh					)
		AS2(	pxor	xmm3, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]	)
		AS2(	movzx	edi, bl					)
		AS2(	pxor	xmm2, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)]	)

		AS2(	movdqa	xmm0, xmm3						)
		AS2(	pslldq	xmm3, 1							)
		AS2(	pxor	xmm2, xmm3						)
		AS2(	movdqa	xmm1, xmm2						)
		AS2(	pslldq	xmm2, 1							)
		AS2(	pxor	xmm5, xmm2						)

		AS2(	psrldq	xmm0, 15						)
		AS2(	movd	WORD_REG(di), xmm0					)
		AS2(	movzx	eax, WORD PTR [RED_TABLE + WORD_REG(di)*2]	)
		AS2(	shl		eax, 8							)

		AS2(	movdqa	xmm0, xmm5						)
		AS2(	pslldq	xmm5, 1							)
		AS2(	pxor	xmm4, xmm5						)

		AS2(	psrldq	xmm1, 15						)
		AS2(	movd	WORD_REG(di), xmm1					)
		AS2(	xor		ax, WORD PTR [RED_TABLE + WORD_REG(di)*2]	)
		AS2(	shl		eax, 8							)

		AS2(	psrldq	xmm0, 15						)
		AS2(	movd	WORD_REG(di), xmm0					)
		AS2(	xor		ax, WORD PTR [RED_TABLE + WORD_REG(di)*2]	)

		AS2(	movd	xmm0, eax						)
		AS2(	pxor	xmm0, xmm4						)

		AS2(	add		WORD_REG(cx), 16					)
		AS2(	sub		WORD_REG(dx), 1						)
		ASJ(	jnz,	0, b							)
		AS2(	movdqa	[WORD_REG(si)], xmm0				)

		AS_POP_IF86(	bp)
		AS_POP_IF86(	bx)

		#ifdef __GNUC__
				".att_syntax prefix;"
					: 
					: "c" (data), "d" (len/16), "S" (hashBuffer), "D" (s_reductionTable)
					: "memory", "cc", "%eax"
			#if CRYPTOPP_BOOL_X64
					, "%ebx", "%r11"
			#endif
				);
		#elif defined(CRYPTOPP_GENERATE_X64_MASM)
			pop rbx
			pop rdi
			pop rsi
			ret
			GCM_AuthenticateBlocks_2K ENDP
		#endif

		return len%16;
		}
	case 3:		// SSE2 and 64K tables
		{
		#ifdef __GNUC__
			__asm__ __volatile__
			(
			".intel_syntax noprefix;"
		#elif defined(CRYPTOPP_GENERATE_X64_MASM)
			ALIGN   8
			GCM_AuthenticateBlocks_64K	PROC FRAME
			rex_push_reg rsi
			push_reg rdi
			.endprolog
			mov rsi, r8
		#else
			AS2(	mov		WORD_REG(cx), data			)
			AS2(	mov		WORD_REG(dx), len			)
			AS2(	mov		WORD_REG(si), hashBuffer	)
			AS2(	shr		WORD_REG(dx), 4				)
		#endif

		AS2(	movdqa	xmm0, [WORD_REG(si)]				)

		#undef MUL_TABLE
		#define MUL_TABLE(i,j) WORD_REG(si) + 32 + (i*4+j)*256*16

		ASL(1)
		AS2(	movdqu	xmm1, [WORD_REG(cx)]				)
		AS2(	pxor	xmm1, xmm0						)
		AS2(	pxor	xmm0, xmm0						)

		#undef SSE2_MUL_32BITS
		#define SSE2_MUL_32BITS(i)								\
			AS2(	movd	eax, xmm1							)\
			AS2(	psrldq	xmm1, 4								)\
			AS2(	movzx	edi, al						)\
			AS2(	add		WORD_REG(di), WORD_REG(di)					)\
			AS2(	pxor	xmm0, [MUL_TABLE(i,0) + WORD_REG(di)*8]	)\
			AS2(	movzx	edi, ah						)\
			AS2(	add		WORD_REG(di), WORD_REG(di)					)\
			AS2(	pxor	xmm0, [MUL_TABLE(i,1) + WORD_REG(di)*8]	)\
			AS2(	shr		eax, 16								)\
			AS2(	movzx	edi, al						)\
			AS2(	add		WORD_REG(di), WORD_REG(di)					)\
			AS2(	pxor	xmm0, [MUL_TABLE(i,2) + WORD_REG(di)*8]	)\
			AS2(	movzx	edi, ah						)\
			AS2(	add		WORD_REG(di), WORD_REG(di)					)\
			AS2(	pxor	xmm0, [MUL_TABLE(i,3) + WORD_REG(di)*8]	)\

		SSE2_MUL_32BITS(0)
		SSE2_MUL_32BITS(1)
		SSE2_MUL_32BITS(2)
		SSE2_MUL_32BITS(3)

		AS2(	add		WORD_REG(cx), 16					)
		AS2(	sub		WORD_REG(dx), 1						)
		ASJ(	jnz,	1, b							)
		AS2(	movdqa	[WORD_REG(si)], xmm0				)

		#ifdef __GNUC__
				".att_syntax prefix;"
					: 
					: "c" (data), "d" (len/16), "S" (hashBuffer)
					: "memory", "cc", "%edi", "%eax"
				);
		#elif defined(CRYPTOPP_GENERATE_X64_MASM)
			pop rdi
			pop rsi
			ret
			GCM_AuthenticateBlocks_64K ENDP
		#endif

		return len%16;
		}
#endif
#ifndef CRYPTOPP_GENERATE_X64_MASM
	}

	return len%16;
}

void GCM_Base::AuthenticateLastHeaderBlock()
{
	if (m_bufferedDataLength > 0)
	{
		memset(m_buffer+m_bufferedDataLength, 0, HASH_BLOCKSIZE-m_bufferedDataLength);
		m_bufferedDataLength = 0;
		GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
	}
}

void GCM_Base::AuthenticateLastConfidentialBlock()
{
	GCM_Base::AuthenticateLastHeaderBlock();
	PutBlock<word64, BigEndian, true>(NULL, m_buffer)(m_totalHeaderLength*8)(m_totalMessageLength*8);
	GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
}

void GCM_Base::AuthenticateLastFooterBlock(byte *mac, size_t macSize)
{
	m_ctr.Seek(0);
	ReverseHashBufferIfNeeded();
	m_ctr.ProcessData(mac, HashBuffer(), macSize);
}

NAMESPACE_END

#endif	// #ifndef CRYPTOPP_GENERATE_X64_MASM
#endif