cryptlib.cpp 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
// cryptlib.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"

#ifndef CRYPTOPP_IMPORTS

#include "cryptlib.h"
#include "misc.h"
#include "filters.h"
#include "algparam.h"
#include "fips140.h"
#include "argnames.h"
#include "fltrimpl.h"
#include "trdlocal.h"
#include "osrng.h"

#include <memory>

NAMESPACE_BEGIN(CryptoPP)

CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1);
CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2);
CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4);
CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8);
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word));
#endif

const std::string DEFAULT_CHANNEL;
const std::string AAD_CHANNEL = "AAD";
const std::string &BufferedTransformation::NULL_CHANNEL = DEFAULT_CHANNEL;

class NullNameValuePairs : public NameValuePairs
{
public:
	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const {return false;}
};

simple_ptr<NullNameValuePairs> s_pNullNameValuePairs(new NullNameValuePairs);
const NameValuePairs &g_nullNameValuePairs = *s_pNullNameValuePairs.m_p;

BufferedTransformation & TheBitBucket()
{
	static BitBucket bitBucket;
	return bitBucket;
}

Algorithm::Algorithm(bool checkSelfTestStatus)
{
	if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled())
	{
		if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread())
			throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed.");

		if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_FAILED)
			throw SelfTestFailure("Cryptographic algorithms are disabled after a power-up self test failed.");
	}
}

void SimpleKeyingInterface::SetKey(const byte *key, size_t length, const NameValuePairs &params)
{
	this->ThrowIfInvalidKeyLength(length);
	this->UncheckedSetKey(key, (unsigned int)length, params);
}

void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, size_t length, int rounds)
{
	SetKey(key, length, MakeParameters(Name::Rounds(), rounds));
}

void SimpleKeyingInterface::SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength)
{
	SetKey(key, length, MakeParameters(Name::IV(), ConstByteArrayParameter(iv, ivLength)));
}

void SimpleKeyingInterface::ThrowIfInvalidKeyLength(size_t length)
{
	if (!IsValidKeyLength(length))
		throw InvalidKeyLength(GetAlgorithm().AlgorithmName(), length);
}

void SimpleKeyingInterface::ThrowIfResynchronizable()
{
	if (IsResynchronizable())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object requires an IV");
}

void SimpleKeyingInterface::ThrowIfInvalidIV(const byte *iv)
{
	if (!iv && IVRequirement() == UNPREDICTABLE_RANDOM_IV)
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object cannot use a null IV");
}

size_t SimpleKeyingInterface::ThrowIfInvalidIVLength(int size)
{
	if (size < 0)
		return IVSize();
	else if ((size_t)size < MinIVLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(size) + " is less than the minimum of " + IntToString(MinIVLength()));
	else if ((size_t)size > MaxIVLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(size) + " exceeds the maximum of " + IntToString(MaxIVLength()));
	else
		return size;
}

const byte * SimpleKeyingInterface::GetIVAndThrowIfInvalid(const NameValuePairs &params, size_t &size)
{
	ConstByteArrayParameter ivWithLength;
	const byte *iv;
	bool found = false;

	try {found = params.GetValue(Name::IV(), ivWithLength);}
	catch (const NameValuePairs::ValueTypeMismatch &) {}

	if (found)
	{
		iv = ivWithLength.begin();
		ThrowIfInvalidIV(iv);
		size = ThrowIfInvalidIVLength((int)ivWithLength.size());
		return iv;
	}
	else if (params.GetValue(Name::IV(), iv))
	{
		ThrowIfInvalidIV(iv);
		size = IVSize();
		return iv;
	}
	else
	{
		ThrowIfResynchronizable();
		size = 0;
		return NULL;
	}
}

void SimpleKeyingInterface::GetNextIV(RandomNumberGenerator &rng, byte *IV)
{
	rng.GenerateBlock(IV, IVSize());
}

size_t BlockTransformation::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const
{
	size_t blockSize = BlockSize();
	size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
	size_t xorIncrement = xorBlocks ? blockSize : 0;
	size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;

	if (flags & BT_ReverseDirection)
	{
		assert(length % blockSize == 0);
		inBlocks += length - blockSize;
		xorBlocks += length - blockSize;
		outBlocks += length - blockSize;
		inIncrement = 0-inIncrement;
		xorIncrement = 0-xorIncrement;
		outIncrement = 0-outIncrement;
	}

	while (length >= blockSize)
	{
		if (flags & BT_XorInput)
		{
			xorbuf(outBlocks, xorBlocks, inBlocks, blockSize);
			ProcessBlock(outBlocks);
		}
		else
			ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks);
		if (flags & BT_InBlockIsCounter)
			const_cast<byte *>(inBlocks)[blockSize-1]++;
		inBlocks += inIncrement;
		outBlocks += outIncrement;
		xorBlocks += xorIncrement;
		length -= blockSize;
	}

	return length;
}

unsigned int BlockTransformation::OptimalDataAlignment() const
{
	return GetAlignmentOf<word32>();
}

unsigned int StreamTransformation::OptimalDataAlignment() const
{
	return GetAlignmentOf<word32>();
}

unsigned int HashTransformation::OptimalDataAlignment() const
{
	return GetAlignmentOf<word32>();
}

void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
	assert(MinLastBlockSize() == 0);	// this function should be overriden otherwise

	if (length == MandatoryBlockSize())
		ProcessData(outString, inString, length);
	else if (length != 0)
		throw NotImplemented(AlgorithmName() + ": this object does't support a special last block");
}

void AuthenticatedSymmetricCipher::SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength)
{
	if (headerLength > MaxHeaderLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": header length " + IntToString(headerLength) + " exceeds the maximum of " + IntToString(MaxHeaderLength()));

	if (messageLength > MaxMessageLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": message length " + IntToString(messageLength) + " exceeds the maximum of " + IntToString(MaxMessageLength()));
		
	if (footerLength > MaxFooterLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": footer length " + IntToString(footerLength) + " exceeds the maximum of " + IntToString(MaxFooterLength()));

	UncheckedSpecifyDataLengths(headerLength, messageLength, footerLength);
}

void AuthenticatedSymmetricCipher::EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength)
{
	Resynchronize(iv, ivLength);
	SpecifyDataLengths(headerLength, messageLength);
	Update(header, headerLength);
	ProcessString(ciphertext, message, messageLength);
	TruncatedFinal(mac, macSize);
}

bool AuthenticatedSymmetricCipher::DecryptAndVerify(byte *message, const byte *mac, size_t macLength, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength)
{
	Resynchronize(iv, ivLength);
	SpecifyDataLengths(headerLength, ciphertextLength);
	Update(header, headerLength);
	ProcessString(message, ciphertext, ciphertextLength);
	return TruncatedVerify(mac, macLength);
}

unsigned int RandomNumberGenerator::GenerateBit()
{
	return GenerateByte() & 1;
}

byte RandomNumberGenerator::GenerateByte()
{
	byte b;
	GenerateBlock(&b, 1);
	return b;
}

word32 RandomNumberGenerator::GenerateWord32(word32 min, word32 max)
{
	word32 range = max-min;
	const int maxBits = BitPrecision(range);

	word32 value;

	do
	{
		GenerateBlock((byte *)&value, sizeof(value));
		value = Crop(value, maxBits);
	} while (value > range);

	return value+min;
}

void RandomNumberGenerator::GenerateBlock(byte *output, size_t size)
{
	ArraySink s(output, size);
	GenerateIntoBufferedTransformation(s, DEFAULT_CHANNEL, size);
}

void RandomNumberGenerator::DiscardBytes(size_t n)
{
	GenerateIntoBufferedTransformation(TheBitBucket(), DEFAULT_CHANNEL, n);
}

void RandomNumberGenerator::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length)
{
	FixedSizeSecBlock<byte, 256> buffer;
	while (length)
	{
		size_t len = UnsignedMin(buffer.size(), length);
		GenerateBlock(buffer, len);
		target.ChannelPut(channel, buffer, len);
		length -= len;
	}
}

//! see NullRNG()
class ClassNullRNG : public RandomNumberGenerator
{
public:
	std::string AlgorithmName() const {return "NullRNG";}
	void GenerateBlock(byte *output, size_t size) {throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes");}
};

RandomNumberGenerator & NullRNG()
{
	static ClassNullRNG s_nullRNG;
	return s_nullRNG;
}

bool HashTransformation::TruncatedVerify(const byte *digestIn, size_t digestLength)
{
	ThrowIfInvalidTruncatedSize(digestLength);
	SecByteBlock digest(digestLength);
	TruncatedFinal(digest, digestLength);
	return VerifyBufsEqual(digest, digestIn, digestLength);
}

void HashTransformation::ThrowIfInvalidTruncatedSize(size_t size) const
{
	if (size > DigestSize())
		throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes");
}

unsigned int BufferedTransformation::GetMaxWaitObjectCount() const
{
	const BufferedTransformation *t = AttachedTransformation();
	return t ? t->GetMaxWaitObjectCount() : 0;
}

void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack)
{
	BufferedTransformation *t = AttachedTransformation();
	if (t)
		t->GetWaitObjects(container, callStack);  // reduce clutter by not adding to stack here
}

void BufferedTransformation::Initialize(const NameValuePairs &parameters, int propagation)
{
	assert(!AttachedTransformation());
	IsolatedInitialize(parameters);
}

bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking)
{
	assert(!AttachedTransformation());
	return IsolatedFlush(hardFlush, blocking);
}

bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking)
{
	assert(!AttachedTransformation());
	return IsolatedMessageSeriesEnd(blocking);
}

byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, size_t &size)
{
	if (channel.empty())
		return CreatePutSpace(size);
	else
		throw NoChannelSupport(AlgorithmName());
}

size_t BufferedTransformation::ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
{
	if (channel.empty())
		return Put2(begin, length, messageEnd, blocking);
	else
		throw NoChannelSupport(AlgorithmName());
}

size_t BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
{
	if (channel.empty())
		return PutModifiable2(begin, length, messageEnd, blocking);
	else
		return ChannelPut2(channel, begin, length, messageEnd, blocking);
}

bool BufferedTransformation::ChannelFlush(const std::string &channel, bool completeFlush, int propagation, bool blocking)
{
	if (channel.empty())
		return Flush(completeFlush, propagation, blocking);
	else
		throw NoChannelSupport(AlgorithmName());
}

bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking)
{
	if (channel.empty())
		return MessageSeriesEnd(propagation, blocking);
	else
		throw NoChannelSupport(AlgorithmName());
}

lword BufferedTransformation::MaxRetrievable() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->MaxRetrievable();
	else
		return CopyTo(TheBitBucket());
}

bool BufferedTransformation::AnyRetrievable() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->AnyRetrievable();
	else
	{
		byte b;
		return Peek(b) != 0;
	}
}

size_t BufferedTransformation::Get(byte &outByte)
{
	if (AttachedTransformation())
		return AttachedTransformation()->Get(outByte);
	else
		return Get(&outByte, 1);
}

size_t BufferedTransformation::Get(byte *outString, size_t getMax)
{
	if (AttachedTransformation())
		return AttachedTransformation()->Get(outString, getMax);
	else
	{
		ArraySink arraySink(outString, getMax);
		return (size_t)TransferTo(arraySink, getMax);
	}
}

size_t BufferedTransformation::Peek(byte &outByte) const
{
	if (AttachedTransformation())
		return AttachedTransformation()->Peek(outByte);
	else
		return Peek(&outByte, 1);
}

size_t BufferedTransformation::Peek(byte *outString, size_t peekMax) const
{
	if (AttachedTransformation())
		return AttachedTransformation()->Peek(outString, peekMax);
	else
	{
		ArraySink arraySink(outString, peekMax);
		return (size_t)CopyTo(arraySink, peekMax);
	}
}

lword BufferedTransformation::Skip(lword skipMax)
{
	if (AttachedTransformation())
		return AttachedTransformation()->Skip(skipMax);
	else
		return TransferTo(TheBitBucket(), skipMax);
}

lword BufferedTransformation::TotalBytesRetrievable() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->TotalBytesRetrievable();
	else
		return MaxRetrievable();
}

unsigned int BufferedTransformation::NumberOfMessages() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->NumberOfMessages();
	else
		return CopyMessagesTo(TheBitBucket());
}

bool BufferedTransformation::AnyMessages() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->AnyMessages();
	else
		return NumberOfMessages() != 0;
}

bool BufferedTransformation::GetNextMessage()
{
	if (AttachedTransformation())
		return AttachedTransformation()->GetNextMessage();
	else
	{
		assert(!AnyMessages());
		return false;
	}
}

unsigned int BufferedTransformation::SkipMessages(unsigned int count)
{
	if (AttachedTransformation())
		return AttachedTransformation()->SkipMessages(count);
	else
		return TransferMessagesTo(TheBitBucket(), count);
}

size_t BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking)
{
	if (AttachedTransformation())
		return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking);
	else
	{
		unsigned int maxMessages = messageCount;
		for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++)
		{
			size_t blockedBytes;
			lword transferredBytes;

			while (AnyRetrievable())
			{
				transferredBytes = LWORD_MAX;
				blockedBytes = TransferTo2(target, transferredBytes, channel, blocking);
				if (blockedBytes > 0)
					return blockedBytes;
			}

			if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
				return 1;

			bool result = GetNextMessage();
			assert(result);
		}
		return 0;
	}
}

unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
{
	if (AttachedTransformation())
		return AttachedTransformation()->CopyMessagesTo(target, count, channel);
	else
		return 0;
}

void BufferedTransformation::SkipAll()
{
	if (AttachedTransformation())
		AttachedTransformation()->SkipAll();
	else
	{
		while (SkipMessages()) {}
		while (Skip()) {}
	}
}

size_t BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
{
	if (AttachedTransformation())
		return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
	else
	{
		assert(!NumberOfMessageSeries());

		unsigned int messageCount;
		do
		{
			messageCount = UINT_MAX;
			size_t blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
			if (blockedBytes)
				return blockedBytes;
		}
		while (messageCount != 0);

		lword byteCount;
		do
		{
			byteCount = ULONG_MAX;
			size_t blockedBytes = TransferTo2(target, byteCount, channel, blocking);
			if (blockedBytes)
				return blockedBytes;
		}
		while (byteCount != 0);

		return 0;
	}
}

void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
{
	if (AttachedTransformation())
		AttachedTransformation()->CopyAllTo(target, channel);
	else
	{
		assert(!NumberOfMessageSeries());
		while (CopyMessagesTo(target, UINT_MAX, channel)) {}
	}
}

void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
{
	if (AttachedTransformation())
		AttachedTransformation()->SetRetrievalChannel(channel);
}

size_t BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
{
	PutWord(false, order, m_buf, value);
	return ChannelPut(channel, m_buf, 2, blocking);
}

size_t BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
{
	PutWord(false, order, m_buf, value);
	return ChannelPut(channel, m_buf, 4, blocking);
}

size_t BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
{
	return ChannelPutWord16(DEFAULT_CHANNEL, value, order, blocking);
}

size_t BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
{
	return ChannelPutWord32(DEFAULT_CHANNEL, value, order, blocking);
}

size_t BufferedTransformation::PeekWord16(word16 &value, ByteOrder order) const
{
	byte buf[2] = {0, 0};
	size_t len = Peek(buf, 2);

	if (order)
		value = (buf[0] << 8) | buf[1];
	else
		value = (buf[1] << 8) | buf[0];

	return len;
}

size_t BufferedTransformation::PeekWord32(word32 &value, ByteOrder order) const
{
	byte buf[4] = {0, 0, 0, 0};
	size_t len = Peek(buf, 4);

	if (order)
		value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
	else
		value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];

	return len;
}

size_t BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
{
	return (size_t)Skip(PeekWord16(value, order));
}

size_t BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
{
	return (size_t)Skip(PeekWord32(value, order));
}

void BufferedTransformation::Attach(BufferedTransformation *newOut)
{
	if (AttachedTransformation() && AttachedTransformation()->Attachable())
		AttachedTransformation()->Attach(newOut);
	else
		Detach(newOut);
}

void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
{
	GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
}

class PK_DefaultEncryptionFilter : public Unflushable<Filter>
{
public:
	PK_DefaultEncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
		: m_rng(rng), m_encryptor(encryptor), m_parameters(parameters)
	{
		Detach(attachment);
	}

	size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
	{
		FILTER_BEGIN;
		m_plaintextQueue.Put(inString, length);

		if (messageEnd)
		{
			{
			size_t plaintextLength;
			if (!SafeConvert(m_plaintextQueue.CurrentSize(), plaintextLength))
				throw InvalidArgument("PK_DefaultEncryptionFilter: plaintext too long");
			size_t ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);

			SecByteBlock plaintext(plaintextLength);
			m_plaintextQueue.Get(plaintext, plaintextLength);
			m_ciphertext.resize(ciphertextLength);
			m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext, m_parameters);
			}
			
			FILTER_OUTPUT(1, m_ciphertext, m_ciphertext.size(), messageEnd);
		}
		FILTER_END_NO_MESSAGE_END;
	}

	RandomNumberGenerator &m_rng;
	const PK_Encryptor &m_encryptor;
	const NameValuePairs &m_parameters;
	ByteQueue m_plaintextQueue;
	SecByteBlock m_ciphertext;
};

BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
{
	return new PK_DefaultEncryptionFilter(rng, *this, attachment, parameters);
}

class PK_DefaultDecryptionFilter : public Unflushable<Filter>
{
public:
	PK_DefaultDecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
		: m_rng(rng), m_decryptor(decryptor), m_parameters(parameters)
	{
		Detach(attachment);
	}

	size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
	{
		FILTER_BEGIN;
		m_ciphertextQueue.Put(inString, length);

		if (messageEnd)
		{
			{
			size_t ciphertextLength;
			if (!SafeConvert(m_ciphertextQueue.CurrentSize(), ciphertextLength))
				throw InvalidArgument("PK_DefaultDecryptionFilter: ciphertext too long");
			size_t maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);

			SecByteBlock ciphertext(ciphertextLength);
			m_ciphertextQueue.Get(ciphertext, ciphertextLength);
			m_plaintext.resize(maxPlaintextLength);
			m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext, m_parameters);
			if (!m_result.isValidCoding)
				throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
			}

			FILTER_OUTPUT(1, m_plaintext, m_result.messageLength, messageEnd);
		}
		FILTER_END_NO_MESSAGE_END;
	}

	RandomNumberGenerator &m_rng;
	const PK_Decryptor &m_decryptor;
	const NameValuePairs &m_parameters;
	ByteQueue m_ciphertextQueue;
	SecByteBlock m_plaintext;
	DecodingResult m_result;
};

BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
{
	return new PK_DefaultDecryptionFilter(rng, *this, attachment, parameters);
}

size_t PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return SignAndRestart(rng, *m, signature, false);
}

size_t PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
	m->Update(message, messageLen);
	return SignAndRestart(rng, *m, signature, false);
}

size_t PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength, 
	const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
	InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
	m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
	return SignAndRestart(rng, *m, signature, false);
}

bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return VerifyAndRestart(*m);
}

bool PK_Verifier::VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLength) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
	InputSignature(*m, signature, signatureLength);
	m->Update(message, messageLen);
	return VerifyAndRestart(*m);
}

DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return RecoverAndRestart(recoveredMessage, *m);
}

DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage, 
	const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, 
	const byte *signature, size_t signatureLength) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
	InputSignature(*m, signature, signatureLength);
	m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
	return RecoverAndRestart(recoveredMessage, *m);
}

void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GeneratePrivateKey(rng, privateKey);
	GeneratePublicKey(rng, privateKey, publicKey);
}

void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GenerateStaticPrivateKey(rng, privateKey);
	GenerateStaticPublicKey(rng, privateKey, publicKey);
}

void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GenerateEphemeralPrivateKey(rng, privateKey);
	GenerateEphemeralPublicKey(rng, privateKey, publicKey);
}

NAMESPACE_END

#endif