Blame view

Socket/cryptopp/cryptlib.cpp 24 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
// cryptlib.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"

#ifndef CRYPTOPP_IMPORTS

#include "cryptlib.h"
#include "misc.h"
#include "filters.h"
#include "algparam.h"
#include "fips140.h"
#include "argnames.h"
#include "fltrimpl.h"
#include "trdlocal.h"
#include "osrng.h"

#include <memory>

NAMESPACE_BEGIN(CryptoPP)

CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1);
CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2);
CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4);
CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8);
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word));
#endif

const std::string DEFAULT_CHANNEL;
const std::string AAD_CHANNEL = "AAD";
const std::string &BufferedTransformation::NULL_CHANNEL = DEFAULT_CHANNEL;

class NullNameValuePairs : public NameValuePairs
{
public:
	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const {return false;}
};

simple_ptr<NullNameValuePairs> s_pNullNameValuePairs(new NullNameValuePairs);
const NameValuePairs &g_nullNameValuePairs = *s_pNullNameValuePairs.m_p;

BufferedTransformation & TheBitBucket()
{
	static BitBucket bitBucket;
	return bitBucket;
}

Algorithm::Algorithm(bool checkSelfTestStatus)
{
	if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled())
	{
		if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread())
			throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed.");

		if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_FAILED)
			throw SelfTestFailure("Cryptographic algorithms are disabled after a power-up self test failed.");
	}
}

void SimpleKeyingInterface::SetKey(const byte *key, size_t length, const NameValuePairs &params)
{
	this->ThrowIfInvalidKeyLength(length);
	this->UncheckedSetKey(key, (unsigned int)length, params);
}

void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, size_t length, int rounds)
{
	SetKey(key, length, MakeParameters(Name::Rounds(), rounds));
}

void SimpleKeyingInterface::SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength)
{
	SetKey(key, length, MakeParameters(Name::IV(), ConstByteArrayParameter(iv, ivLength)));
}

void SimpleKeyingInterface::ThrowIfInvalidKeyLength(size_t length)
{
	if (!IsValidKeyLength(length))
		throw InvalidKeyLength(GetAlgorithm().AlgorithmName(), length);
}

void SimpleKeyingInterface::ThrowIfResynchronizable()
{
	if (IsResynchronizable())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object requires an IV");
}

void SimpleKeyingInterface::ThrowIfInvalidIV(const byte *iv)
{
	if (!iv && IVRequirement() == UNPREDICTABLE_RANDOM_IV)
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object cannot use a null IV");
}

size_t SimpleKeyingInterface::ThrowIfInvalidIVLength(int size)
{
	if (size < 0)
		return IVSize();
	else if ((size_t)size < MinIVLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(size) + " is less than the minimum of " + IntToString(MinIVLength()));
	else if ((size_t)size > MaxIVLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(size) + " exceeds the maximum of " + IntToString(MaxIVLength()));
	else
		return size;
}

const byte * SimpleKeyingInterface::GetIVAndThrowIfInvalid(const NameValuePairs &params, size_t &size)
{
	ConstByteArrayParameter ivWithLength;
	const byte *iv;
	bool found = false;

	try {found = params.GetValue(Name::IV(), ivWithLength);}
	catch (const NameValuePairs::ValueTypeMismatch &) {}

	if (found)
	{
		iv = ivWithLength.begin();
		ThrowIfInvalidIV(iv);
		size = ThrowIfInvalidIVLength((int)ivWithLength.size());
		return iv;
	}
	else if (params.GetValue(Name::IV(), iv))
	{
		ThrowIfInvalidIV(iv);
		size = IVSize();
		return iv;
	}
	else
	{
		ThrowIfResynchronizable();
		size = 0;
		return NULL;
	}
}

void SimpleKeyingInterface::GetNextIV(RandomNumberGenerator &rng, byte *IV)
{
	rng.GenerateBlock(IV, IVSize());
}

size_t BlockTransformation::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const
{
	size_t blockSize = BlockSize();
	size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
	size_t xorIncrement = xorBlocks ? blockSize : 0;
	size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;

	if (flags & BT_ReverseDirection)
	{
		assert(length % blockSize == 0);
		inBlocks += length - blockSize;
		xorBlocks += length - blockSize;
		outBlocks += length - blockSize;
		inIncrement = 0-inIncrement;
		xorIncrement = 0-xorIncrement;
		outIncrement = 0-outIncrement;
	}

	while (length >= blockSize)
	{
		if (flags & BT_XorInput)
		{
			xorbuf(outBlocks, xorBlocks, inBlocks, blockSize);
			ProcessBlock(outBlocks);
		}
		else
			ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks);
		if (flags & BT_InBlockIsCounter)
			const_cast<byte *>(inBlocks)[blockSize-1]++;
		inBlocks += inIncrement;
		outBlocks += outIncrement;
		xorBlocks += xorIncrement;
		length -= blockSize;
	}

	return length;
}

unsigned int BlockTransformation::OptimalDataAlignment() const
{
	return GetAlignmentOf<word32>();
}

unsigned int StreamTransformation::OptimalDataAlignment() const
{
	return GetAlignmentOf<word32>();
}

unsigned int HashTransformation::OptimalDataAlignment() const
{
	return GetAlignmentOf<word32>();
}

void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
	assert(MinLastBlockSize() == 0);	// this function should be overriden otherwise

	if (length == MandatoryBlockSize())
		ProcessData(outString, inString, length);
	else if (length != 0)
		throw NotImplemented(AlgorithmName() + ": this object does't support a special last block");
}

void AuthenticatedSymmetricCipher::SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength)
{
	if (headerLength > MaxHeaderLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": header length " + IntToString(headerLength) + " exceeds the maximum of " + IntToString(MaxHeaderLength()));

	if (messageLength > MaxMessageLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": message length " + IntToString(messageLength) + " exceeds the maximum of " + IntToString(MaxMessageLength()));

	if (footerLength > MaxFooterLength())
		throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": footer length " + IntToString(footerLength) + " exceeds the maximum of " + IntToString(MaxFooterLength()));

	UncheckedSpecifyDataLengths(headerLength, messageLength, footerLength);
}

void AuthenticatedSymmetricCipher::EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength)
{
	Resynchronize(iv, ivLength);
	SpecifyDataLengths(headerLength, messageLength);
	Update(header, headerLength);
	ProcessString(ciphertext, message, messageLength);
	TruncatedFinal(mac, macSize);
}

bool AuthenticatedSymmetricCipher::DecryptAndVerify(byte *message, const byte *mac, size_t macLength, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength)
{
	Resynchronize(iv, ivLength);
	SpecifyDataLengths(headerLength, ciphertextLength);
	Update(header, headerLength);
	ProcessString(message, ciphertext, ciphertextLength);
	return TruncatedVerify(mac, macLength);
}

unsigned int RandomNumberGenerator::GenerateBit()
{
	return GenerateByte() & 1;
}

byte RandomNumberGenerator::GenerateByte()
{
	byte b;
	GenerateBlock(&b, 1);
	return b;
}

word32 RandomNumberGenerator::GenerateWord32(word32 min, word32 max)
{
	word32 range = max-min;
	const int maxBits = BitPrecision(range);

	word32 value;

	do
	{
		GenerateBlock((byte *)&value, sizeof(value));
		value = Crop(value, maxBits);
	} while (value > range);

	return value+min;
}

void RandomNumberGenerator::GenerateBlock(byte *output, size_t size)
{
	ArraySink s(output, size);
	GenerateIntoBufferedTransformation(s, DEFAULT_CHANNEL, size);
}

void RandomNumberGenerator::DiscardBytes(size_t n)
{
	GenerateIntoBufferedTransformation(TheBitBucket(), DEFAULT_CHANNEL, n);
}

void RandomNumberGenerator::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length)
{
	FixedSizeSecBlock<byte, 256> buffer;
	while (length)
	{
		size_t len = UnsignedMin(buffer.size(), length);
		GenerateBlock(buffer, len);
		target.ChannelPut(channel, buffer, len);
		length -= len;
	}
}

//! see NullRNG()
class ClassNullRNG : public RandomNumberGenerator
{
public:
	std::string AlgorithmName() const {return "NullRNG";}
	void GenerateBlock(byte *output, size_t size) {throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes");}
};

RandomNumberGenerator & NullRNG()
{
	static ClassNullRNG s_nullRNG;
	return s_nullRNG;
}

bool HashTransformation::TruncatedVerify(const byte *digestIn, size_t digestLength)
{
	ThrowIfInvalidTruncatedSize(digestLength);
	SecByteBlock digest(digestLength);
	TruncatedFinal(digest, digestLength);
	return VerifyBufsEqual(digest, digestIn, digestLength);
}

void HashTransformation::ThrowIfInvalidTruncatedSize(size_t size) const
{
	if (size > DigestSize())
		throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes");
}

unsigned int BufferedTransformation::GetMaxWaitObjectCount() const
{
	const BufferedTransformation *t = AttachedTransformation();
	return t ? t->GetMaxWaitObjectCount() : 0;
}

void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack)
{
	BufferedTransformation *t = AttachedTransformation();
	if (t)
		t->GetWaitObjects(container, callStack);  // reduce clutter by not adding to stack here
}

void BufferedTransformation::Initialize(const NameValuePairs &parameters, int propagation)
{
	assert(!AttachedTransformation());
	IsolatedInitialize(parameters);
}

bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking)
{
	assert(!AttachedTransformation());
	return IsolatedFlush(hardFlush, blocking);
}

bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking)
{
	assert(!AttachedTransformation());
	return IsolatedMessageSeriesEnd(blocking);
}

byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, size_t &size)
{
	if (channel.empty())
		return CreatePutSpace(size);
	else
		throw NoChannelSupport(AlgorithmName());
}

size_t BufferedTransformation::ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
{
	if (channel.empty())
		return Put2(begin, length, messageEnd, blocking);
	else
		throw NoChannelSupport(AlgorithmName());
}

size_t BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
{
	if (channel.empty())
		return PutModifiable2(begin, length, messageEnd, blocking);
	else
		return ChannelPut2(channel, begin, length, messageEnd, blocking);
}

bool BufferedTransformation::ChannelFlush(const std::string &channel, bool completeFlush, int propagation, bool blocking)
{
	if (channel.empty())
		return Flush(completeFlush, propagation, blocking);
	else
		throw NoChannelSupport(AlgorithmName());
}

bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking)
{
	if (channel.empty())
		return MessageSeriesEnd(propagation, blocking);
	else
		throw NoChannelSupport(AlgorithmName());
}

lword BufferedTransformation::MaxRetrievable() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->MaxRetrievable();
	else
		return CopyTo(TheBitBucket());
}

bool BufferedTransformation::AnyRetrievable() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->AnyRetrievable();
	else
	{
		byte b;
		return Peek(b) != 0;
	}
}

size_t BufferedTransformation::Get(byte &outByte)
{
	if (AttachedTransformation())
		return AttachedTransformation()->Get(outByte);
	else
		return Get(&outByte, 1);
}

size_t BufferedTransformation::Get(byte *outString, size_t getMax)
{
	if (AttachedTransformation())
		return AttachedTransformation()->Get(outString, getMax);
	else
	{
		ArraySink arraySink(outString, getMax);
		return (size_t)TransferTo(arraySink, getMax);
	}
}

size_t BufferedTransformation::Peek(byte &outByte) const
{
	if (AttachedTransformation())
		return AttachedTransformation()->Peek(outByte);
	else
		return Peek(&outByte, 1);
}

size_t BufferedTransformation::Peek(byte *outString, size_t peekMax) const
{
	if (AttachedTransformation())
		return AttachedTransformation()->Peek(outString, peekMax);
	else
	{
		ArraySink arraySink(outString, peekMax);
		return (size_t)CopyTo(arraySink, peekMax);
	}
}

lword BufferedTransformation::Skip(lword skipMax)
{
	if (AttachedTransformation())
		return AttachedTransformation()->Skip(skipMax);
	else
		return TransferTo(TheBitBucket(), skipMax);
}

lword BufferedTransformation::TotalBytesRetrievable() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->TotalBytesRetrievable();
	else
		return MaxRetrievable();
}

unsigned int BufferedTransformation::NumberOfMessages() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->NumberOfMessages();
	else
		return CopyMessagesTo(TheBitBucket());
}

bool BufferedTransformation::AnyMessages() const
{
	if (AttachedTransformation())
		return AttachedTransformation()->AnyMessages();
	else
		return NumberOfMessages() != 0;
}

bool BufferedTransformation::GetNextMessage()
{
	if (AttachedTransformation())
		return AttachedTransformation()->GetNextMessage();
	else
	{
		assert(!AnyMessages());
		return false;
	}
}

unsigned int BufferedTransformation::SkipMessages(unsigned int count)
{
	if (AttachedTransformation())
		return AttachedTransformation()->SkipMessages(count);
	else
		return TransferMessagesTo(TheBitBucket(), count);
}

size_t BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking)
{
	if (AttachedTransformation())
		return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking);
	else
	{
		unsigned int maxMessages = messageCount;
		for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++)
		{
			size_t blockedBytes;
			lword transferredBytes;

			while (AnyRetrievable())
			{
				transferredBytes = LWORD_MAX;
				blockedBytes = TransferTo2(target, transferredBytes, channel, blocking);
				if (blockedBytes > 0)
					return blockedBytes;
			}

			if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
				return 1;

			bool result = GetNextMessage();
			assert(result);
		}
		return 0;
	}
}

unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
{
	if (AttachedTransformation())
		return AttachedTransformation()->CopyMessagesTo(target, count, channel);
	else
		return 0;
}

void BufferedTransformation::SkipAll()
{
	if (AttachedTransformation())
		AttachedTransformation()->SkipAll();
	else
	{
		while (SkipMessages()) {}
		while (Skip()) {}
	}
}

size_t BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
{
	if (AttachedTransformation())
		return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
	else
	{
		assert(!NumberOfMessageSeries());

		unsigned int messageCount;
		do
		{
			messageCount = UINT_MAX;
			size_t blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
			if (blockedBytes)
				return blockedBytes;
		}
		while (messageCount != 0);

		lword byteCount;
		do
		{
			byteCount = ULONG_MAX;
			size_t blockedBytes = TransferTo2(target, byteCount, channel, blocking);
			if (blockedBytes)
				return blockedBytes;
		}
		while (byteCount != 0);

		return 0;
	}
}

void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
{
	if (AttachedTransformation())
		AttachedTransformation()->CopyAllTo(target, channel);
	else
	{
		assert(!NumberOfMessageSeries());
		while (CopyMessagesTo(target, UINT_MAX, channel)) {}
	}
}

void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
{
	if (AttachedTransformation())
		AttachedTransformation()->SetRetrievalChannel(channel);
}

size_t BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
{
	PutWord(false, order, m_buf, value);
	return ChannelPut(channel, m_buf, 2, blocking);
}

size_t BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
{
	PutWord(false, order, m_buf, value);
	return ChannelPut(channel, m_buf, 4, blocking);
}

size_t BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
{
	return ChannelPutWord16(DEFAULT_CHANNEL, value, order, blocking);
}

size_t BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
{
	return ChannelPutWord32(DEFAULT_CHANNEL, value, order, blocking);
}

size_t BufferedTransformation::PeekWord16(word16 &value, ByteOrder order) const
{
	byte buf[2] = {0, 0};
	size_t len = Peek(buf, 2);

	if (order)
		value = (buf[0] << 8) | buf[1];
	else
		value = (buf[1] << 8) | buf[0];

	return len;
}

size_t BufferedTransformation::PeekWord32(word32 &value, ByteOrder order) const
{
	byte buf[4] = {0, 0, 0, 0};
	size_t len = Peek(buf, 4);

	if (order)
		value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
	else
		value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];

	return len;
}

size_t BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
{
	return (size_t)Skip(PeekWord16(value, order));
}

size_t BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
{
	return (size_t)Skip(PeekWord32(value, order));
}

void BufferedTransformation::Attach(BufferedTransformation *newOut)
{
	if (AttachedTransformation() && AttachedTransformation()->Attachable())
		AttachedTransformation()->Attach(newOut);
	else
		Detach(newOut);
}

void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
{
	GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
}

class PK_DefaultEncryptionFilter : public Unflushable<Filter>
{
public:
	PK_DefaultEncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
		: m_rng(rng), m_encryptor(encryptor), m_parameters(parameters)
	{
		Detach(attachment);
	}

	size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
	{
		FILTER_BEGIN;
		m_plaintextQueue.Put(inString, length);

		if (messageEnd)
		{
			{
			size_t plaintextLength;
			if (!SafeConvert(m_plaintextQueue.CurrentSize(), plaintextLength))
				throw InvalidArgument("PK_DefaultEncryptionFilter: plaintext too long");
			size_t ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);

			SecByteBlock plaintext(plaintextLength);
			m_plaintextQueue.Get(plaintext, plaintextLength);
			m_ciphertext.resize(ciphertextLength);
			m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext, m_parameters);
			}

			FILTER_OUTPUT(1, m_ciphertext, m_ciphertext.size(), messageEnd);
		}
		FILTER_END_NO_MESSAGE_END;
	}

	RandomNumberGenerator &m_rng;
	const PK_Encryptor &m_encryptor;
	const NameValuePairs &m_parameters;
	ByteQueue m_plaintextQueue;
	SecByteBlock m_ciphertext;
};

BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
{
	return new PK_DefaultEncryptionFilter(rng, *this, attachment, parameters);
}

class PK_DefaultDecryptionFilter : public Unflushable<Filter>
{
public:
	PK_DefaultDecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
		: m_rng(rng), m_decryptor(decryptor), m_parameters(parameters)
	{
		Detach(attachment);
	}

	size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
	{
		FILTER_BEGIN;
		m_ciphertextQueue.Put(inString, length);

		if (messageEnd)
		{
			{
			size_t ciphertextLength;
			if (!SafeConvert(m_ciphertextQueue.CurrentSize(), ciphertextLength))
				throw InvalidArgument("PK_DefaultDecryptionFilter: ciphertext too long");
			size_t maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);

			SecByteBlock ciphertext(ciphertextLength);
			m_ciphertextQueue.Get(ciphertext, ciphertextLength);
			m_plaintext.resize(maxPlaintextLength);
			m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext, m_parameters);
			if (!m_result.isValidCoding)
				throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
			}

			FILTER_OUTPUT(1, m_plaintext, m_result.messageLength, messageEnd);
		}
		FILTER_END_NO_MESSAGE_END;
	}

	RandomNumberGenerator &m_rng;
	const PK_Decryptor &m_decryptor;
	const NameValuePairs &m_parameters;
	ByteQueue m_ciphertextQueue;
	SecByteBlock m_plaintext;
	DecodingResult m_result;
};

BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
{
	return new PK_DefaultDecryptionFilter(rng, *this, attachment, parameters);
}

size_t PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return SignAndRestart(rng, *m, signature, false);
}

size_t PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
	m->Update(message, messageLen);
	return SignAndRestart(rng, *m, signature, false);
}

size_t PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength, 
	const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
	InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
	m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
	return SignAndRestart(rng, *m, signature, false);
}

bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return VerifyAndRestart(*m);
}

bool PK_Verifier::VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLength) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
	InputSignature(*m, signature, signatureLength);
	m->Update(message, messageLen);
	return VerifyAndRestart(*m);
}

DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
{
	std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
	return RecoverAndRestart(recoveredMessage, *m);
}

DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage, 
	const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, 
	const byte *signature, size_t signatureLength) const
{
	std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
	InputSignature(*m, signature, signatureLength);
	m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
	return RecoverAndRestart(recoveredMessage, *m);
}

void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GeneratePrivateKey(rng, privateKey);
	GeneratePublicKey(rng, privateKey, publicKey);
}

void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GenerateStaticPrivateKey(rng, privateKey);
	GenerateStaticPublicKey(rng, privateKey, publicKey);
}

void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
	GenerateEphemeralPrivateKey(rng, privateKey);
	GenerateEphemeralPublicKey(rng, privateKey, publicKey);
}

NAMESPACE_END

#endif