main.c
4.75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
* ============ Platform Configuration ============
*/
#include <msp430.h>
#define EAP_RX_BUF UCA0RXBUF
#define EAP_TX_BUF UCA0TXBUF
#define EAP_RX_VECTOR USCIAB0RX_VECTOR
#define EAP_TX_VECTOR PORT2_VECTOR
#define EAP_RX_ACK_CONFIG() (P2DIR |= BIT0)
#define EAP_RX_ACK_SET() (P2OUT |= BIT0)
#define EAP_RX_ACK_CLR() (P2OUT &= ~BIT0)
#define EAP_TX_INT_CONFIG() (P2DIR &= ~BIT1, P2IES |= BIT1, P2IFG &= BIT1, P2IE |= BIT1)
#define EAP_TX_INT_TST() (P2IFG & BIT1)
#define EAP_TX_INT_CLR() (P2IFG &= ~BIT1)
void init(void)
{
WDTCTL = WDTPW + WDTHOLD;
BCSCTL2 = SELM_0 + DIVM_0 + DIVS_0;
if (CALBC1_1MHZ != 0xFF)
{
DCOCTL = 0x00;
BCSCTL1 = CALBC1_1MHZ; /* Set DCO to 1MHz */
DCOCTL = CALDCO_1MHZ;
}
BCSCTL1 |= XT2OFF + DIVA_0;
BCSCTL3 = XT2S_0 + LFXT1S_2 + XCAP_1;
P1DIR |= BIT0 + BIT6; /* LED */
P1OUT &= ~BIT0;
UCA0CTL1 |= UCSWRST;
P1SEL |= BIT1 + BIT2;
P1SEL2 |= BIT1 + BIT2;
EAP_RX_ACK_CONFIG();
EAP_RX_ACK_SET();
EAP_TX_INT_CONFIG();
UCA0CTL1 = UCSSEL_2 + UCSWRST;
UCA0MCTL = UCBRF_0 + UCBRS_6;
UCA0BR0 = 8;
UCA0CTL1 &= ~UCSWRST;
IFG2 &= ~(UCA0RXIFG);
IE2 |= UCA0RXIE;
__enable_interrupt();
}
/*
* ============ Serial Driver ============
*/
#include <Em_Message.h>
__attribute__((interrupt(EAP_RX_VECTOR)))
static void rxHandler(void)
{
uint8_t b = EAP_RX_BUF;
if (Em_Message_addByte(b))
{
Em_Message_dispatch();
}
EAP_RX_ACK_CLR();
EAP_RX_ACK_SET();
}
__attribute__((interrupt(EAP_TX_VECTOR)))
static void txHandler(void)
{
if (EAP_TX_INT_TST())
{
uint8_t b;
if (Em_Message_getByte(&b))
{
EAP_TX_BUF = b;
}
EAP_TX_INT_CLR();
}
}
void Em_Message_startSend()
{
uint8_t b;
if (Em_Message_getByte(&b))
{
UCA0TXBUF = b;
}
}
uint8_t Em_Message_lock()
{
uint8_t key;
asm ("MOV r2, %0": "=r" (key));
key &= 0x8;
asm ("DINT");
return key;
}
void Em_Message_unlock(uint8_t key)
{
if (key)
{
asm ("EINT");
}
else
{
asm ("DINT");
}
}
/*
* Extra code and interrupts
*/
void led0_toggle(void)
{
P1OUT ^= BIT0;
}
void led1_toggle(void)
{
P1OUT ^= BIT6;
}
void led0_on(void)
{
P1OUT |= BIT0;
}
void led0_off(void)
{
P1OUT &= ~BIT0;
}
void led1_on(void)
{
P1OUT |= BIT6;
}
void led1_off(void)
{
P1OUT &= ~BIT6;
}
__attribute__((interrupt(TIMER0_A0_VECTOR)))
static void Timer_A (void)
{
led0_toggle(); // Toggle LED
//led1_toggle();
}
void initTimer(void)
{
CCTL0 = CCIE; // CCR0 interrupt enabled
CCR0 = 2048; // 32kHz/8/4096 -> 1 sec
TACTL = TASSEL_1 + ID_3 + MC_1; // ACLK, /8, upmode
led1_off();
}
void stopTimer(void)
{
CCTL0 ^= CCTL0 ;
}
/*
* ============ Application Program ============
*/
#include <DUREX.h>
#include <string.h>
DUREX_numBytes_t numBytes = 0;
DUREX_data_t data = "";
DUREX_numPackets_t numPackets = 0;
DUREX_messageAvailable_t messageAvailable = 0;
uint8_t lastMessageAck = 1;
int main(int argc, char *argv[])
{
volatile int dummy = 0;
init();
initTimer();
DUREX_run();
while (dummy == 0)
{
/* idle */
}
return 0;
}
void DUREX_connectHandler(void)
{
stopTimer();
led0_on();
led1_off();
}
void DUREX_disconnectHandler(void)
{
led0_off();
led1_off();
initTimer();
}
void DUREX_numBytes_fetch(DUREX_numBytes_t* const output)
{
*output = numBytes;
}
void DUREX_numBytes_store(DUREX_numBytes_t* const input)
{
numBytes = *input;
}
void DUREX_data_fetch(DUREX_data_t* const output)
{
memcpy(output,data,numBytes);
}
void DUREX_data_store(DUREX_data_t* const input)
{
memcpy(data,input,numBytes);
}
void DUREX_numPackets_fetch(DUREX_numPackets_t* const output)
{
*output = numPackets;
}
void DUREX_numPackets_store(DUREX_numPackets_t* const input)
{
numPackets = *input;
}
void DUREX_messageAvailable_fetch(DUREX_messageAvailable_t* const output)
{
*output = messageAvailable;
}
void DUREX_messageAvailable_store(DUREX_messageAvailable_t* const input)
{
messageAvailable = *input;
if(messageAvailable == DUREX_TRUE)
{
led1_on();
lastMessageAck = 0;
messageAvailable = DUREX_FALSE;
DUREX_messageAvailable_indicate();
memcpy(data,"ACK",4);
numPackets = 1;
numBytes = 4;
messageAvailable = DUREX_TRUE;
DUREX_messageAvailable_indicate();
}
else if(messageAvailable == DUREX_FALSE)
{
led1_off();
lastMessageAck = 1;
}
}