polynomi.h 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
#ifndef CRYPTOPP_POLYNOMI_H
#define CRYPTOPP_POLYNOMI_H

/*! \file */

#include "cryptlib.h"
#include "misc.h"
#include "algebra.h"

#include <iosfwd>
#include <vector>

NAMESPACE_BEGIN(CryptoPP)

//! represents single-variable polynomials over arbitrary rings
/*!	\nosubgrouping */
template <class T> class PolynomialOver
{
public:
	//! \name ENUMS, EXCEPTIONS, and TYPEDEFS
	//@{
		//! division by zero exception
		class DivideByZero : public Exception 
		{
		public: 
			DivideByZero() : Exception(OTHER_ERROR, "PolynomialOver<T>: division by zero") {}
		};

		//! specify the distribution for randomization functions
		class RandomizationParameter
		{
		public:
			RandomizationParameter(unsigned int coefficientCount, const typename T::RandomizationParameter &coefficientParameter )
				: m_coefficientCount(coefficientCount), m_coefficientParameter(coefficientParameter) {}

		private:
			unsigned int m_coefficientCount;
			typename T::RandomizationParameter m_coefficientParameter;
			friend class PolynomialOver<T>;
		};

		typedef T Ring;
		typedef typename T::Element CoefficientType;
	//@}

	//! \name CREATORS
	//@{
		//! creates the zero polynomial
		PolynomialOver() {}

		//!
		PolynomialOver(const Ring &ring, unsigned int count)
			: m_coefficients((size_t)count, ring.Identity()) {}

		//! copy constructor
		PolynomialOver(const PolynomialOver<Ring> &t)
			: m_coefficients(t.m_coefficients.size()) {*this = t;}

		//! construct constant polynomial
		PolynomialOver(const CoefficientType &element)
			: m_coefficients(1, element) {}

		//! construct polynomial with specified coefficients, starting from coefficient of x^0
		template <typename Iterator> PolynomialOver(Iterator begin, Iterator end)
			: m_coefficients(begin, end) {}

		//! convert from string
		PolynomialOver(const char *str, const Ring &ring) {FromStr(str, ring);}

		//! convert from big-endian byte array
		PolynomialOver(const byte *encodedPolynomialOver, unsigned int byteCount);

		//! convert from Basic Encoding Rules encoded byte array
		explicit PolynomialOver(const byte *BEREncodedPolynomialOver);

		//! convert from BER encoded byte array stored in a BufferedTransformation object
		explicit PolynomialOver(BufferedTransformation &bt);

		//! create a random PolynomialOver<T>
		PolynomialOver(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring)
			{Randomize(rng, parameter, ring);}
	//@}

	//! \name ACCESSORS
	//@{
		//! the zero polynomial will return a degree of -1
		int Degree(const Ring &ring) const {return int(CoefficientCount(ring))-1;}
		//!
		unsigned int CoefficientCount(const Ring &ring) const;
		//! return coefficient for x^i
		CoefficientType GetCoefficient(unsigned int i, const Ring &ring) const;
	//@}

	//! \name MANIPULATORS
	//@{
		//!
		PolynomialOver<Ring>&  operator=(const PolynomialOver<Ring>& t);

		//!
		void Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring);

		//! set the coefficient for x^i to value
		void SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring);

		//!
		void Negate(const Ring &ring);

		//!
		void swap(PolynomialOver<Ring> &t);
	//@}


	//! \name BASIC ARITHMETIC ON POLYNOMIALS
	//@{
		bool Equals(const PolynomialOver<Ring> &t, const Ring &ring) const;
		bool IsZero(const Ring &ring) const {return CoefficientCount(ring)==0;}

		PolynomialOver<Ring> Plus(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> Minus(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> Inverse(const Ring &ring) const;

		PolynomialOver<Ring> Times(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> DividedBy(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> Modulo(const PolynomialOver<Ring>& t, const Ring &ring) const;
		PolynomialOver<Ring> MultiplicativeInverse(const Ring &ring) const;
		bool IsUnit(const Ring &ring) const;

		PolynomialOver<Ring>& Accumulate(const PolynomialOver<Ring>& t, const Ring &ring);
		PolynomialOver<Ring>& Reduce(const PolynomialOver<Ring>& t, const Ring &ring);

		//!
		PolynomialOver<Ring> Doubled(const Ring &ring) const {return Plus(*this, ring);}
		//!
		PolynomialOver<Ring> Squared(const Ring &ring) const {return Times(*this, ring);}

		CoefficientType EvaluateAt(const CoefficientType &x, const Ring &ring) const;

		PolynomialOver<Ring>& ShiftLeft(unsigned int n, const Ring &ring);
		PolynomialOver<Ring>& ShiftRight(unsigned int n, const Ring &ring);

		//! calculate r and q such that (a == d*q + r) && (0 <= degree of r < degree of d)
		static void Divide(PolynomialOver<Ring> &r, PolynomialOver<Ring> &q, const PolynomialOver<Ring> &a, const PolynomialOver<Ring> &d, const Ring &ring);
	//@}

	//! \name INPUT/OUTPUT
	//@{
		std::istream& Input(std::istream &in, const Ring &ring);
		std::ostream& Output(std::ostream &out, const Ring &ring) const;
	//@}

private:
	void FromStr(const char *str, const Ring &ring);

	std::vector<CoefficientType> m_coefficients;
};

//! Polynomials over a fixed ring
/*! Having a fixed ring allows overloaded operators */
template <class T, int instance> class PolynomialOverFixedRing : private PolynomialOver<T>
{
	typedef PolynomialOver<T> B;
	typedef PolynomialOverFixedRing<T, instance> ThisType;

public:
	typedef T Ring;
	typedef typename T::Element CoefficientType;
	typedef typename B::DivideByZero DivideByZero;
	typedef typename B::RandomizationParameter RandomizationParameter;

	//! \name CREATORS
	//@{
		//! creates the zero polynomial
		PolynomialOverFixedRing(unsigned int count = 0) : B(ms_fixedRing, count) {}

		//! copy constructor
		PolynomialOverFixedRing(const ThisType &t) : B(t) {}

		explicit PolynomialOverFixedRing(const B &t) : B(t) {}

		//! construct constant polynomial
		PolynomialOverFixedRing(const CoefficientType &element) : B(element) {}

		//! construct polynomial with specified coefficients, starting from coefficient of x^0
		template <typename Iterator> PolynomialOverFixedRing(Iterator first, Iterator last)
			: B(first, last) {}

		//! convert from string
		explicit PolynomialOverFixedRing(const char *str) : B(str, ms_fixedRing) {}

		//! convert from big-endian byte array
		PolynomialOverFixedRing(const byte *encodedPoly, unsigned int byteCount) : B(encodedPoly, byteCount) {}

		//! convert from Basic Encoding Rules encoded byte array
		explicit PolynomialOverFixedRing(const byte *BEREncodedPoly) : B(BEREncodedPoly) {}

		//! convert from BER encoded byte array stored in a BufferedTransformation object
		explicit PolynomialOverFixedRing(BufferedTransformation &bt) : B(bt) {}

		//! create a random PolynomialOverFixedRing
		PolynomialOverFixedRing(RandomNumberGenerator &rng, const RandomizationParameter &parameter) : B(rng, parameter, ms_fixedRing) {}

		static const ThisType &Zero();
		static const ThisType &One();
	//@}

	//! \name ACCESSORS
	//@{
		//! the zero polynomial will return a degree of -1
		int Degree() const {return B::Degree(ms_fixedRing);}
		//! degree + 1
		unsigned int CoefficientCount() const {return B::CoefficientCount(ms_fixedRing);}
		//! return coefficient for x^i
		CoefficientType GetCoefficient(unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
		//! return coefficient for x^i
		CoefficientType operator[](unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
	//@}

	//! \name MANIPULATORS
	//@{
		//!
		ThisType&  operator=(const ThisType& t) {B::operator=(t); return *this;}
		//!
		ThisType&  operator+=(const ThisType& t) {Accumulate(t, ms_fixedRing); return *this;}
		//!
		ThisType&  operator-=(const ThisType& t) {Reduce(t, ms_fixedRing); return *this;}
		//!
		ThisType&  operator*=(const ThisType& t) {return *this = *this*t;}
		//!
		ThisType&  operator/=(const ThisType& t) {return *this = *this/t;}
		//!
		ThisType&  operator%=(const ThisType& t) {return *this = *this%t;}

		//!
		ThisType&  operator<<=(unsigned int n) {ShiftLeft(n, ms_fixedRing); return *this;}
		//!
		ThisType&  operator>>=(unsigned int n) {ShiftRight(n, ms_fixedRing); return *this;}

		//! set the coefficient for x^i to value
		void SetCoefficient(unsigned int i, const CoefficientType &value) {B::SetCoefficient(i, value, ms_fixedRing);}

		//!
		void Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter) {B::Randomize(rng, parameter, ms_fixedRing);}

		//!
		void Negate() {B::Negate(ms_fixedRing);}

		void swap(ThisType &t) {B::swap(t);}
	//@}

	//! \name UNARY OPERATORS
	//@{
		//!
		bool operator!() const {return CoefficientCount()==0;}
		//!
		ThisType operator+() const {return *this;}
		//!
		ThisType operator-() const {return ThisType(Inverse(ms_fixedRing));}
	//@}

	//! \name BINARY OPERATORS
	//@{
		//!
		friend ThisType operator>>(ThisType a, unsigned int n)	{return ThisType(a>>=n);}
		//!
		friend ThisType operator<<(ThisType a, unsigned int n)	{return ThisType(a<<=n);}
	//@}

	//! \name OTHER ARITHMETIC FUNCTIONS
	//@{
		//!
		ThisType MultiplicativeInverse() const {return ThisType(B::MultiplicativeInverse(ms_fixedRing));}
		//!
		bool IsUnit() const {return B::IsUnit(ms_fixedRing);}

		//!
		ThisType Doubled() const {return ThisType(B::Doubled(ms_fixedRing));}
		//!
		ThisType Squared() const {return ThisType(B::Squared(ms_fixedRing));}

		CoefficientType EvaluateAt(const CoefficientType &x) const {return B::EvaluateAt(x, ms_fixedRing);}

		//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
		static void Divide(ThisType &r, ThisType &q, const ThisType &a, const ThisType &d)
			{B::Divide(r, q, a, d, ms_fixedRing);}
	//@}

	//! \name INPUT/OUTPUT
	//@{
		//!
		friend std::istream& operator>>(std::istream& in, ThisType &a)
			{return a.Input(in, ms_fixedRing);}
		//!
		friend std::ostream& operator<<(std::ostream& out, const ThisType &a)
			{return a.Output(out, ms_fixedRing);}
	//@}

private:
	struct NewOnePolynomial
	{
		ThisType * operator()() const
		{
			return new ThisType(ms_fixedRing.MultiplicativeIdentity());
		}
	};

	static const Ring ms_fixedRing;
};

//! Ring of polynomials over another ring
template <class T> class RingOfPolynomialsOver : public AbstractEuclideanDomain<PolynomialOver<T> >
{
public:
	typedef T CoefficientRing;
	typedef PolynomialOver<T> Element;
	typedef typename Element::CoefficientType CoefficientType;
	typedef typename Element::RandomizationParameter RandomizationParameter;

	RingOfPolynomialsOver(const CoefficientRing &ring) : m_ring(ring) {}

	Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &parameter)
		{return Element(rng, parameter, m_ring);}

	bool Equal(const Element &a, const Element &b) const
		{return a.Equals(b, m_ring);}

	const Element& Identity() const
		{return this->result = m_ring.Identity();}

	const Element& Add(const Element &a, const Element &b) const
		{return this->result = a.Plus(b, m_ring);}

	Element& Accumulate(Element &a, const Element &b) const
		{a.Accumulate(b, m_ring); return a;}

	const Element& Inverse(const Element &a) const
		{return this->result = a.Inverse(m_ring);}

	const Element& Subtract(const Element &a, const Element &b) const
		{return this->result = a.Minus(b, m_ring);}

	Element& Reduce(Element &a, const Element &b) const
		{return a.Reduce(b, m_ring);}

	const Element& Double(const Element &a) const
		{return this->result = a.Doubled(m_ring);}

	const Element& MultiplicativeIdentity() const
		{return this->result = m_ring.MultiplicativeIdentity();}

	const Element& Multiply(const Element &a, const Element &b) const
		{return this->result = a.Times(b, m_ring);}

	const Element& Square(const Element &a) const
		{return this->result = a.Squared(m_ring);}

	bool IsUnit(const Element &a) const
		{return a.IsUnit(m_ring);}

	const Element& MultiplicativeInverse(const Element &a) const
		{return this->result = a.MultiplicativeInverse(m_ring);}

	const Element& Divide(const Element &a, const Element &b) const
		{return this->result = a.DividedBy(b, m_ring);}

	const Element& Mod(const Element &a, const Element &b) const
		{return this->result = a.Modulo(b, m_ring);}

	void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
		{Element::Divide(r, q, a, d, m_ring);}

	class InterpolationFailed : public Exception
	{
	public:
		InterpolationFailed() : Exception(OTHER_ERROR, "RingOfPolynomialsOver<T>: interpolation failed") {}
	};

	Element Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const;

	// a faster version of Interpolate(x, y, n).EvaluateAt(position)
	CoefficientType InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
/*
	void PrepareBulkInterpolation(CoefficientType *w, const CoefficientType x[], unsigned int n) const;
	void PrepareBulkInterpolationAt(CoefficientType *v, const CoefficientType &position, const CoefficientType x[], const CoefficientType w[], unsigned int n) const;
	CoefficientType BulkInterpolateAt(const CoefficientType y[], const CoefficientType v[], unsigned int n) const;
*/
protected:
	void CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;

	CoefficientRing m_ring;
};

template <class Ring, class Element>
void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n);
template <class Ring, class Element>
void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n);
template <class Ring, class Element>
Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n);

//!
template <class T, int instance>
inline bool operator==(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Equals(b, a.ms_fixedRing);}
//!
template <class T, int instance>
inline bool operator!=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return !(a==b);}

//!
template <class T, int instance>
inline bool operator> (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Degree() > b.Degree();}
//!
template <class T, int instance>
inline bool operator>=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Degree() >= b.Degree();}
//!
template <class T, int instance>
inline bool operator< (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Degree() < b.Degree();}
//!
template <class T, int instance>
inline bool operator<=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return a.Degree() <= b.Degree();}

//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator+(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Plus(b, a.ms_fixedRing));}
//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator-(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Minus(b, a.ms_fixedRing));}
//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator*(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Times(b, a.ms_fixedRing));}
//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator/(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.DividedBy(b, a.ms_fixedRing));}
//!
template <class T, int instance>
inline CryptoPP::PolynomialOverFixedRing<T, instance> operator%(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
	{return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Modulo(b, a.ms_fixedRing));}

NAMESPACE_END

NAMESPACE_BEGIN(std)
template<class T> inline void swap(CryptoPP::PolynomialOver<T> &a, CryptoPP::PolynomialOver<T> &b)
{
	a.swap(b);
}
template<class T, int i> inline void swap(CryptoPP::PolynomialOverFixedRing<T,i> &a, CryptoPP::PolynomialOverFixedRing<T,i> &b)
{
	a.swap(b);
}
NAMESPACE_END

#endif