gfpcrypt.h 19.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
#ifndef CRYPTOPP_GFPCRYPT_H
#define CRYPTOPP_GFPCRYPT_H

/** \file
	Implementation of schemes based on DL over GF(p)
*/

#include "pubkey.h"
#include "modexppc.h"
#include "sha.h"
#include "algparam.h"
#include "asn.h"
#include "smartptr.h"
#include "hmac.h"

#include <limits.h>

NAMESPACE_BEGIN(CryptoPP)

CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters<Integer>;

//! _
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBased : public ASN1CryptoMaterial<DL_GroupParameters<Integer> >
{
	typedef DL_GroupParameters_IntegerBased ThisClass;
	
public:
	void Initialize(const DL_GroupParameters_IntegerBased &params)
		{Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());}
	void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
		{GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));}
	void Initialize(const Integer &p, const Integer &g)
		{SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);}
	void Initialize(const Integer &p, const Integer &q, const Integer &g)
		{SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}

	// ASN1Object interface
	void BERDecode(BufferedTransformation &bt);
	void DEREncode(BufferedTransformation &bt) const;

	// GeneratibleCryptoMaterial interface
	/*! parameters: (ModulusSize, SubgroupOrderSize (optional)) */
	void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
	void AssignFrom(const NameValuePairs &source);
	
	// DL_GroupParameters
	const Integer & GetSubgroupOrder() const {return m_q;}
	Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();}
	bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
	bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation<Integer> *precomp) const;
	bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;}
	void EncodeElement(bool reversible, const Element &element, byte *encoded) const
		{element.Encode(encoded, GetModulus().ByteCount());}
	unsigned int GetEncodedElementSize(bool reversible) const {return GetModulus().ByteCount();}
	Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const;
	Integer ConvertElementToInteger(const Element &element) const
		{return element;}
	Integer GetMaxExponent() const;
	static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "";}

	OID GetAlgorithmID() const;

	virtual const Integer & GetModulus() const =0;
	virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0;

	void SetSubgroupOrder(const Integer &q)
		{m_q = q; ParametersChanged();}

protected:
	Integer ComputeGroupOrder(const Integer &modulus) const
		{return modulus-(GetFieldType() == 1 ? 1 : -1);}

	// GF(p) = 1, GF(p^2) = 2
	virtual int GetFieldType() const =0;
	virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const;

private:
	Integer m_q;
};

//! _
template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<CPP_TYPENAME GROUP_PRECOMP::Element> >
class CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl<GROUP_PRECOMP, BASE_PRECOMP, DL_GroupParameters_IntegerBased>
{
	typedef DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> ThisClass;

public:
	typedef typename GROUP_PRECOMP::Element Element;

	// GeneratibleCryptoMaterial interface
	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
		{return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();}

	void AssignFrom(const NameValuePairs &source)
		{AssignFromHelper<DL_GroupParameters_IntegerBased>(this, source);}

	// DL_GroupParameters
	const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
	DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}

	// IntegerGroupParameters
	const Integer & GetModulus() const {return this->m_groupPrecomputation.GetModulus();}
    const Integer & GetGenerator() const {return this->m_gpc.GetBase(this->GetGroupPrecomputation());}

	void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g)		// these have to be set together
		{this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->GetGroupPrecomputation(), g); this->ParametersChanged();}

	// non-inherited
	bool operator==(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
		{return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && this->GetSubgroupOrder() == rhs.GetSubgroupOrder();}
	bool operator!=(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
		{return !operator==(rhs);}
};

CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>;

//! GF(p) group parameters
class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>
{
public:
	// DL_GroupParameters
	bool IsIdentity(const Integer &element) const {return element == Integer::One();}
	void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;

	// NameValuePairs interface
	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
	{
		return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();
	}

	// used by MQV
	Element MultiplyElements(const Element &a, const Element &b) const;
	Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;

protected:
	int GetFieldType() const {return 1;}
};

//! GF(p) group parameters that default to same primes
class CRYPTOPP_DLL DL_GroupParameters_GFP_DefaultSafePrime : public DL_GroupParameters_GFP
{
public:
	typedef NoCofactorMultiplication DefaultCofactorOption;

protected:
	unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;}
};

//! GDSA algorithm
template <class T>
class DL_Algorithm_GDSA : public DL_ElgamalLikeSignatureAlgorithm<T>
{
public:
	static const char * CRYPTOPP_API StaticAlgorithmName() {return "DSA-1363";}

	void Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
	{
		const Integer &q = params.GetSubgroupOrder();
		r %= q;
		Integer kInv = k.InverseMod(q);
		s = (kInv * (x*r + e)) % q;
		assert(!!r && !!s);
	}

	bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
	{
		const Integer &q = params.GetSubgroupOrder();
		if (r>=q || r<1 || s>=q || s<1)
			return false;

		Integer w = s.InverseMod(q);
		Integer u1 = (e * w) % q;
		Integer u2 = (r * w) % q;
		// verify r == (g^u1 * y^u2 mod p) mod q
		return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
	}
};

CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<Integer>;

//! NR algorithm
template <class T>
class DL_Algorithm_NR : public DL_ElgamalLikeSignatureAlgorithm<T>
{
public:
	static const char * CRYPTOPP_API StaticAlgorithmName() {return "NR";}

	void Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
	{
		const Integer &q = params.GetSubgroupOrder();
		r = (r + e) % q;
		s = (k - x*r) % q;
		assert(!!r);
	}

	bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
	{
		const Integer &q = params.GetSubgroupOrder();
		if (r>=q || r<1 || s>=q)
			return false;

		// check r == (m_g^s * m_y^r + m) mod m_q
		return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q;
	}
};

/*! DSA public key format is defined in 7.3.3 of RFC 2459. The
	private key format is defined in 12.9 of PKCS #11 v2.10. */
template <class GP>
class DL_PublicKey_GFP : public DL_PublicKeyImpl<GP>
{
public:
	void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &y)
		{this->AccessGroupParameters().Initialize(params); this->SetPublicElement(y);}
	void Initialize(const Integer &p, const Integer &g, const Integer &y)
		{this->AccessGroupParameters().Initialize(p, g); this->SetPublicElement(y);}
	void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
		{this->AccessGroupParameters().Initialize(p, q, g); this->SetPublicElement(y);}

	// X509PublicKey
	void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
		{this->SetPublicElement(Integer(bt));}
	void DEREncodePublicKey(BufferedTransformation &bt) const
		{this->GetPublicElement().DEREncode(bt);}
};

//! DL private key (in GF(p) groups)
template <class GP>
class DL_PrivateKey_GFP : public DL_PrivateKeyImpl<GP>
{
public:
	void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
		{this->GenerateRandomWithKeySize(rng, modulusBits);}
	void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
		{this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));}
	void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
		{this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));}
	void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &x)
		{this->AccessGroupParameters().Initialize(params); this->SetPrivateExponent(x);}
	void Initialize(const Integer &p, const Integer &g, const Integer &x)
		{this->AccessGroupParameters().Initialize(p, g); this->SetPrivateExponent(x);}
	void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
		{this->AccessGroupParameters().Initialize(p, q, g); this->SetPrivateExponent(x);}
};

//! DL signing/verification keys (in GF(p) groups)
struct DL_SignatureKeys_GFP
{
	typedef DL_GroupParameters_GFP GroupParameters;
	typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
	typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
};

//! DL encryption/decryption keys (in GF(p) groups)
struct DL_CryptoKeys_GFP
{
	typedef DL_GroupParameters_GFP_DefaultSafePrime GroupParameters;
	typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
	typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
};

//! provided for backwards compatibility, this class uses the old non-standard Crypto++ key format
template <class BASE>
class DL_PublicKey_GFP_OldFormat : public BASE
{
public:
	void BERDecode(BufferedTransformation &bt)
	{
		BERSequenceDecoder seq(bt);
			Integer v1(seq);
			Integer v2(seq);
			Integer v3(seq);

			if (seq.EndReached())
			{
				this->AccessGroupParameters().Initialize(v1, v1/2, v2);
				this->SetPublicElement(v3);
			}
			else
			{
				Integer v4(seq);
				this->AccessGroupParameters().Initialize(v1, v2, v3);
				this->SetPublicElement(v4);
			}

		seq.MessageEnd();
	}

	void DEREncode(BufferedTransformation &bt) const
	{
		DERSequenceEncoder seq(bt);
			this->GetGroupParameters().GetModulus().DEREncode(seq);
			if (this->GetGroupParameters().GetCofactor() != 2)
				this->GetGroupParameters().GetSubgroupOrder().DEREncode(seq);
			this->GetGroupParameters().GetGenerator().DEREncode(seq);
			this->GetPublicElement().DEREncode(seq);
		seq.MessageEnd();
	}
};

//! provided for backwards compatibility, this class uses the old non-standard Crypto++ key format
template <class BASE>
class DL_PrivateKey_GFP_OldFormat : public BASE
{
public:
	void BERDecode(BufferedTransformation &bt)
	{
		BERSequenceDecoder seq(bt);
			Integer v1(seq);
			Integer v2(seq);
			Integer v3(seq);
			Integer v4(seq);

			if (seq.EndReached())
			{
				this->AccessGroupParameters().Initialize(v1, v1/2, v2);
				this->SetPrivateExponent(v4 % (v1/2));	// some old keys may have x >= q
			}
			else
			{
				Integer v5(seq);
				this->AccessGroupParameters().Initialize(v1, v2, v3);
				this->SetPrivateExponent(v5);
			}

		seq.MessageEnd();
	}

	void DEREncode(BufferedTransformation &bt) const
	{
		DERSequenceEncoder seq(bt);
			this->GetGroupParameters().GetModulus().DEREncode(seq);
			if (this->GetGroupParameters().GetCofactor() != 2)
				this->GetGroupParameters().GetSubgroupOrder().DEREncode(seq);
			this->GetGroupParameters().GetGenerator().DEREncode(seq);
			this->GetGroupParameters().ExponentiateBase(this->GetPrivateExponent()).DEREncode(seq);
			this->GetPrivateExponent().DEREncode(seq);
		seq.MessageEnd();
	}
};

//! <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
template <class H>
struct GDSA : public DL_SS<
	DL_SignatureKeys_GFP, 
	DL_Algorithm_GDSA<Integer>, 
	DL_SignatureMessageEncodingMethod_DSA,
	H>
{
};

//! <a href="http://www.weidai.com/scan-mirror/sig.html#NR">NR</a>
template <class H>
struct NR : public DL_SS<
	DL_SignatureKeys_GFP, 
	DL_Algorithm_NR<Integer>, 
	DL_SignatureMessageEncodingMethod_NR,
	H>
{
};

//! DSA group parameters, these are GF(p) group parameters that are allowed by the DSA standard
class CRYPTOPP_DLL DL_GroupParameters_DSA : public DL_GroupParameters_GFP
{
public:
	/*! also checks that the lengths of p and q are allowed by the DSA standard */
	bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
	/*! parameters: (ModulusSize), or (Modulus, SubgroupOrder, SubgroupGenerator) */
	/*! ModulusSize must be between DSA::MIN_PRIME_LENGTH and DSA::MAX_PRIME_LENGTH, and divisible by DSA::PRIME_LENGTH_MULTIPLE */
	void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);

	static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits)
		{return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}

	enum {MIN_PRIME_LENGTH = 1024, MAX_PRIME_LENGTH = 3072, PRIME_LENGTH_MULTIPLE = 1024};
};

template <class H>
class DSA2;

//! DSA keys
struct DL_Keys_DSA
{
	typedef DL_PublicKey_GFP<DL_GroupParameters_DSA> PublicKey;
	typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA> > PrivateKey;
};

//! <a href="http://en.wikipedia.org/wiki/Digital_Signature_Algorithm">DSA</a>, as specified in FIPS 186-3
// class named DSA2 instead of DSA for backwards compatibility (DSA was a non-template class)
template <class H>
class DSA2 : public DL_SS<
	DL_Keys_DSA, 
	DL_Algorithm_GDSA<Integer>, 
	DL_SignatureMessageEncodingMethod_DSA,
	H, 
	DSA2<H> >
{
public:
	static std::string CRYPTOPP_API StaticAlgorithmName() {return "DSA/" + (std::string)H::StaticAlgorithmName();}
};

//! DSA with SHA-1, typedef'd for backwards compatibility
typedef DSA2<SHA> DSA;

CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_GFP<DL_GroupParameters_DSA>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_GFP<DL_GroupParameters_DSA>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA> >;

//! the XOR encryption method, for use with DL-based cryptosystems
template <class MAC, bool DHAES_MODE>
class DL_EncryptionAlgorithm_Xor : public DL_SymmetricEncryptionAlgorithm
{
public:
	bool ParameterSupported(const char *name) const {return strcmp(name, Name::EncodingParameters()) == 0;}
	size_t GetSymmetricKeyLength(size_t plaintextLength) const
		{return plaintextLength + MAC::DEFAULT_KEYLENGTH;}
	size_t GetSymmetricCiphertextLength(size_t plaintextLength) const
		{return plaintextLength + MAC::DIGESTSIZE;}
	size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const
		{return (unsigned int)SaturatingSubtract(ciphertextLength, (unsigned int)MAC::DIGESTSIZE);}
	void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs &parameters) const
	{
		const byte *cipherKey, *macKey;
		if (DHAES_MODE)
		{
			macKey = key;
			cipherKey = key + MAC::DEFAULT_KEYLENGTH;
		}
		else
		{
			cipherKey = key;
			macKey = key + plaintextLength;
		}

		ConstByteArrayParameter encodingParameters;
		parameters.GetValue(Name::EncodingParameters(), encodingParameters);

		xorbuf(ciphertext, plaintext, cipherKey, plaintextLength);
		MAC mac(macKey);
		mac.Update(ciphertext, plaintextLength);
		mac.Update(encodingParameters.begin(), encodingParameters.size());
		if (DHAES_MODE)
		{
			byte L[8] = {0,0,0,0};
			PutWord(false, BIG_ENDIAN_ORDER, L+4, word32(encodingParameters.size()));
			mac.Update(L, 8);
		}
		mac.Final(ciphertext + plaintextLength);
	}
	DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs &parameters) const
	{
		size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength);
		const byte *cipherKey, *macKey;
		if (DHAES_MODE)
		{
			macKey = key;
			cipherKey = key + MAC::DEFAULT_KEYLENGTH;
		}
		else
		{
			cipherKey = key;
			macKey = key + plaintextLength;
		}

		ConstByteArrayParameter encodingParameters;
		parameters.GetValue(Name::EncodingParameters(), encodingParameters);

		MAC mac(macKey);
		mac.Update(ciphertext, plaintextLength);
		mac.Update(encodingParameters.begin(), encodingParameters.size());
		if (DHAES_MODE)
		{
			byte L[8] = {0,0,0,0};
			PutWord(false, BIG_ENDIAN_ORDER, L+4, word32(encodingParameters.size()));
			mac.Update(L, 8);
		}
		if (!mac.Verify(ciphertext + plaintextLength))
			return DecodingResult();

		xorbuf(plaintext, ciphertext, cipherKey, plaintextLength);
		return DecodingResult(plaintextLength);
	}
};

//! _
template <class T, bool DHAES_MODE, class KDF>
class DL_KeyDerivationAlgorithm_P1363 : public DL_KeyDerivationAlgorithm<T>
{
public:
	bool ParameterSupported(const char *name) const {return strcmp(name, Name::KeyDerivationParameters()) == 0;}
	void Derive(const DL_GroupParameters<T> &params, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs &parameters) const
	{
		SecByteBlock agreedSecret;
		if (DHAES_MODE)
		{
			agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false));
			params.EncodeElement(true, ephemeralPublicKey, agreedSecret);
			params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true));
		}
		else
		{
			agreedSecret.New(params.GetEncodedElementSize(false));
			params.EncodeElement(false, agreedElement, agreedSecret);
		}

		ConstByteArrayParameter derivationParameters;
		parameters.GetValue(Name::KeyDerivationParameters(), derivationParameters);
		KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size(), derivationParameters.begin(), derivationParameters.size());
	}
};

//! Discrete Log Integrated Encryption Scheme, AKA <a href="http://www.weidai.com/scan-mirror/ca.html#DLIES">DLIES</a>
template <class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true>
struct DLIES
	: public DL_ES<
		DL_CryptoKeys_GFP,
		DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
		DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<SHA1> >,
		DL_EncryptionAlgorithm_Xor<HMAC<SHA1>, DHAES_MODE>,
		DLIES<> >
{
	static std::string CRYPTOPP_API StaticAlgorithmName() {return "DLIES";}	// TODO: fix this after name is standardized
};

NAMESPACE_END

#endif