misc.h 33.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
#ifndef CRYPTOPP_MISC_H
#define CRYPTOPP_MISC_H

#include "cryptlib.h"
#include "smartptr.h"
#include <string.h>		// for memcpy and memmove

#ifdef _MSC_VER
	#if _MSC_VER >= 1400
		// VC2005 workaround: disable declarations that conflict with winnt.h
		#define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1
		#define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2
		#define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3
		#define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4
		#include <intrin.h>
		#undef _interlockedbittestandset
		#undef _interlockedbittestandreset
		#undef _interlockedbittestandset64
		#undef _interlockedbittestandreset64
		#define CRYPTOPP_FAST_ROTATE(x) 1
	#elif _MSC_VER >= 1300
		#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64)
	#else
		#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
	#endif
#elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \
	(defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM)))
	#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
#elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)	// depend on GCC's peephole optimization to generate rotate instructions
	#define CRYPTOPP_FAST_ROTATE(x) 1
#else
	#define CRYPTOPP_FAST_ROTATE(x) 0
#endif

#ifdef __BORLANDC__
#include <mem.h>
#endif

#if defined(__GNUC__) && defined(__linux__)
#define CRYPTOPP_BYTESWAP_AVAILABLE
#include <byteswap.h>
#endif

NAMESPACE_BEGIN(CryptoPP)

// ************** compile-time assertion ***************

template <bool b>
struct CompileAssert
{
	static char dummy[2*b-1];
};

#define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__)
#if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS)
#define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance)
#else
#define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) static CompileAssert<(assertion)> CRYPTOPP_ASSERT_JOIN(cryptopp_assert_, instance)
#endif
#define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y)
#define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y

// ************** misc classes ***************

class CRYPTOPP_DLL Empty
{
};

//! _
template <class BASE1, class BASE2>
class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2
{
};

//! _
template <class BASE1, class BASE2, class BASE3>
class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3
{
};

template <class T>
class ObjectHolder
{
protected:
	T m_object;
};

class NotCopyable
{
public:
	NotCopyable() {}
private:
    NotCopyable(const NotCopyable &);
    void operator=(const NotCopyable &);
};

template <class T>
struct NewObject
{
	T* operator()() const {return new T;}
};

/*! This function safely initializes a static object in a multithreaded environment without using locks (for portability).
	Note that if two threads call Ref() at the same time, they may get back different references, and one object 
	may end up being memory leaked. This is by design.
*/
template <class T, class F = NewObject<T>, int instance=0>
class Singleton
{
public:
	Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {}

	// prevent this function from being inlined
	CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const;

private:
	F m_objectFactory;
};

template <class T, class F, int instance>
const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const
{
	static volatile simple_ptr<T> s_pObject;
	T *p = s_pObject.m_p;

	if (p)
		return *p;

	T *newObject = m_objectFactory();
	p = s_pObject.m_p;

	if (p)
	{
		delete newObject;
		return *p;
	}

	s_pObject.m_p = newObject;
	return *newObject;
}

// ************** misc functions ***************

#if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED))
inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
{
	if (count > sizeInBytes)
		throw InvalidArgument("memcpy_s: buffer overflow");
	memcpy(dest, src, count);
}

inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
{
	if (count > sizeInBytes)
		throw InvalidArgument("memmove_s: buffer overflow");
	memmove(dest, src, count);
}

#if __BORLANDC__ >= 0x620
// C++Builder 2010 workaround: can't use std::memcpy_s because it doesn't allow 0 lengths
#define memcpy_s CryptoPP::memcpy_s
#define memmove_s CryptoPP::memmove_s
#endif
#endif

inline void * memset_z(void *ptr, int value, size_t num)
{
// avoid extranous warning on GCC 4.3.2 Ubuntu 8.10
#if CRYPTOPP_GCC_VERSION >= 30001
	if (__builtin_constant_p(num) && num==0)
		return ptr;
#endif
	return memset(ptr, value, num);
}

// can't use std::min or std::max in MSVC60 or Cygwin 1.1.0
template <class T> inline const T& STDMIN(const T& a, const T& b)
{
	return b < a ? b : a;
}

template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b)
{
	CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0));
	assert(a==0 || a>0);	// GCC workaround: get rid of the warning "comparison is always true due to limited range of data type"
	assert(b>=0);

	if (sizeof(T1)<=sizeof(T2))
		return b < (T2)a ? (T1)b : a;
	else
		return (T1)b < a ? (T1)b : a;
}

template <class T> inline const T& STDMAX(const T& a, const T& b)
{
	return a < b ? b : a;
}

#define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue

// this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack
#define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y)))
// these may be faster on other CPUs/compilers
// #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255)
// #define GETBYTE(x, y) (((byte *)&(x))[y])

#define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y)))

template <class T>
unsigned int Parity(T value)
{
	for (unsigned int i=8*sizeof(value)/2; i>0; i/=2)
		value ^= value >> i;
	return (unsigned int)value&1;
}

template <class T>
unsigned int BytePrecision(const T &value)
{
	if (!value)
		return 0;

	unsigned int l=0, h=8*sizeof(value);

	while (h-l > 8)
	{
		unsigned int t = (l+h)/2;
		if (value >> t)
			l = t;
		else
			h = t;
	}

	return h/8;
}

template <class T>
unsigned int BitPrecision(const T &value)
{
	if (!value)
		return 0;

	unsigned int l=0, h=8*sizeof(value);

	while (h-l > 1)
	{
		unsigned int t = (l+h)/2;
		if (value >> t)
			l = t;
		else
			h = t;
	}

	return h;
}

inline unsigned int TrailingZeros(word32 v)
{
#if defined(__GNUC__) && CRYPTOPP_GCC_VERSION >= 30400
	return __builtin_ctz(v);
#elif defined(_MSC_VER) && _MSC_VER >= 1400
	unsigned long result;
	_BitScanForward(&result, v);
	return result;
#else
	// from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup
	static const int MultiplyDeBruijnBitPosition[32] = 
	{
	  0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 
	  31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
	};
	return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27];
#endif
}

inline unsigned int TrailingZeros(word64 v)
{
#if defined(__GNUC__) && CRYPTOPP_GCC_VERSION >= 30400
	return __builtin_ctzll(v);
#elif defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(_M_X64) || defined(_M_IA64))
	unsigned long result;
	_BitScanForward64(&result, v);
	return result;
#else
	return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32));
#endif
}

template <class T>
inline T Crop(T value, size_t size)
{
	if (size < 8*sizeof(value))
    	return T(value & ((T(1) << size) - 1));
	else
		return value;
}

template <class T1, class T2>
inline bool SafeConvert(T1 from, T2 &to)
{
	to = (T2)from;
	if (from != to || (from > 0) != (to > 0))
		return false;
	return true;
}

inline size_t BitsToBytes(size_t bitCount)
{
	return ((bitCount+7)/(8));
}

inline size_t BytesToWords(size_t byteCount)
{
	return ((byteCount+WORD_SIZE-1)/WORD_SIZE);
}

inline size_t BitsToWords(size_t bitCount)
{
	return ((bitCount+WORD_BITS-1)/(WORD_BITS));
}

inline size_t BitsToDwords(size_t bitCount)
{
	return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS));
}

CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count);
CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count);

CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count);

template <class T>
inline bool IsPowerOf2(const T &n)
{
	return n > 0 && (n & (n-1)) == 0;
}

template <class T1, class T2>
inline T2 ModPowerOf2(const T1 &a, const T2 &b)
{
	assert(IsPowerOf2(b));
	return T2(a) & (b-1);
}

template <class T1, class T2>
inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m)
{
	if (IsPowerOf2(m))
		return n - ModPowerOf2(n, m);
	else
		return n - n%m;
}

template <class T1, class T2>
inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m)
{
	if (n+m-1 < n)
		throw InvalidArgument("RoundUpToMultipleOf: integer overflow");
	return RoundDownToMultipleOf(n+m-1, m);
}

template <class T>
inline unsigned int GetAlignmentOf(T *dummy=NULL)	// VC60 workaround
{
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
	if (sizeof(T) < 16)
		return 1;
#endif

#if (_MSC_VER >= 1300)
	return __alignof(T);
#elif defined(__GNUC__)
	return __alignof__(T);
#elif CRYPTOPP_BOOL_SLOW_WORD64
	return UnsignedMin(4U, sizeof(T));
#else
	return sizeof(T);
#endif
}

inline bool IsAlignedOn(const void *p, unsigned int alignment)
{
	return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2((size_t)p, alignment) == 0 : (size_t)p % alignment == 0);
}

template <class T>
inline bool IsAligned(const void *p, T *dummy=NULL)	// VC60 workaround
{
	return IsAlignedOn(p, GetAlignmentOf<T>());
}

#ifdef IS_LITTLE_ENDIAN
	typedef LittleEndian NativeByteOrder;
#else
	typedef BigEndian NativeByteOrder;
#endif

inline ByteOrder GetNativeByteOrder()
{
	return NativeByteOrder::ToEnum();
}

inline bool NativeByteOrderIs(ByteOrder order)
{
	return order == GetNativeByteOrder();
}

template <class T>
std::string IntToString(T a, unsigned int base = 10)
{
	if (a == 0)
		return "0";
	bool negate = false;
	if (a < 0)
	{
		negate = true;
		a = 0-a;	// VC .NET does not like -a
	}
	std::string result;
	while (a > 0)
	{
		T digit = a % base;
		result = char((digit < 10 ? '0' : ('a' - 10)) + digit) + result;
		a /= base;
	}
	if (negate)
		result = "-" + result;
	return result;
}

template <class T1, class T2>
inline T1 SaturatingSubtract(const T1 &a, const T2 &b)
{
	return T1((a > b) ? (a - b) : 0);
}

template <class T>
inline CipherDir GetCipherDir(const T &obj)
{
	return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION;
}

CRYPTOPP_DLL void CRYPTOPP_API CallNewHandler();

inline void IncrementCounterByOne(byte *inout, unsigned int s)
{
	for (int i=s-1, carry=1; i>=0 && carry; i--)
		carry = !++inout[i];
}

inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int s)
{
	int i, carry;
	for (i=s-1, carry=1; i>=0 && carry; i--)
		carry = ((output[i] = input[i]+1) == 0);
	memcpy_s(output, s, input, i+1);
}

template <class T>
inline void ConditionalSwap(bool c, T &a, T &b)
{
	T t = c * (a ^ b);
	a ^= t;
	b ^= t;
}

template <class T>
inline void ConditionalSwapPointers(bool c, T &a, T &b)
{
	ptrdiff_t t = c * (a - b);
	a -= t;
	b += t;
}

// see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html
// and https://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data
template <class T>
void SecureWipeBuffer(T *buf, size_t n)
{
	// GCC 4.3.2 on Cygwin optimizes away the first store if this loop is done in the forward direction
	volatile T *p = buf+n;
	while (n--)
		*(--p) = 0;
}

#if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)

template<> inline void SecureWipeBuffer(byte *buf, size_t n)
{
	volatile byte *p = buf;
#ifdef __GNUC__
	asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
	__stosb((byte *)(size_t)p, 0, n);
#endif
}

template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
{
	volatile word16 *p = buf;
#ifdef __GNUC__
	asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
	__stosw((word16 *)(size_t)p, 0, n);
#endif
}

template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
{
	volatile word32 *p = buf;
#ifdef __GNUC__
	asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
	__stosd((unsigned long *)(size_t)p, 0, n);
#endif
}

template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
{
#if CRYPTOPP_BOOL_X64
	volatile word64 *p = buf;
#ifdef __GNUC__
	asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
	__stosq((word64 *)(size_t)p, 0, n);
#endif
#else
	SecureWipeBuffer((word32 *)buf, 2*n);
#endif
}

#endif	// #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)

template <class T>
inline void SecureWipeArray(T *buf, size_t n)
{
	if (sizeof(T) % 8 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word64>() == 0)
		SecureWipeBuffer((word64 *)buf, n * (sizeof(T)/8));
	else if (sizeof(T) % 4 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word32>() == 0)
		SecureWipeBuffer((word32 *)buf, n * (sizeof(T)/4));
	else if (sizeof(T) % 2 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word16>() == 0)
		SecureWipeBuffer((word16 *)buf, n * (sizeof(T)/2));
	else
		SecureWipeBuffer((byte *)buf, n * sizeof(T));
}

// this function uses wcstombs(), which assumes that setlocale() has been called
static std::string StringNarrow(const wchar_t *str, bool throwOnError = true)
{
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4996)	//  'wcstombs': This function or variable may be unsafe.
#endif
	size_t size = wcstombs(NULL, str, 0);
	if (size == size_t(0)-1)
	{
		if (throwOnError)
			throw InvalidArgument("StringNarrow: wcstombs() call failed");
		else
			return std::string();
	}
	std::string result(size, 0);
	wcstombs(&result[0], str, size);
	return result;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
}

#if CRYPTOPP_BOOL_ALIGN16_ENABLED
CRYPTOPP_DLL void * CRYPTOPP_API AlignedAllocate(size_t size);
CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *p);
#endif

CRYPTOPP_DLL void * CRYPTOPP_API UnalignedAllocate(size_t size);
CRYPTOPP_DLL void CRYPTOPP_API UnalignedDeallocate(void *p);

// ************** rotate functions ***************

template <class T> inline T rotlFixed(T x, unsigned int y)
{
	assert(y < sizeof(T)*8);
	return y ? T((x<<y) | (x>>(sizeof(T)*8-y))) : x;
}

template <class T> inline T rotrFixed(T x, unsigned int y)
{
	assert(y < sizeof(T)*8);
	return y ? T((x>>y) | (x<<(sizeof(T)*8-y))) : x;
}

template <class T> inline T rotlVariable(T x, unsigned int y)
{
	assert(y < sizeof(T)*8);
	return T((x<<y) | (x>>(sizeof(T)*8-y)));
}

template <class T> inline T rotrVariable(T x, unsigned int y)
{
	assert(y < sizeof(T)*8);
	return T((x>>y) | (x<<(sizeof(T)*8-y)));
}

template <class T> inline T rotlMod(T x, unsigned int y)
{
	y %= sizeof(T)*8;
	return T((x<<y) | (x>>(sizeof(T)*8-y)));
}

template <class T> inline T rotrMod(T x, unsigned int y)
{
	y %= sizeof(T)*8;
	return T((x>>y) | (x<<(sizeof(T)*8-y)));
}

#ifdef _MSC_VER

template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _lrotl(x, y) : x;
}

template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _lrotr(x, y) : x;
}

template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _lrotl(x, y);
}

template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _lrotr(x, y);
}

template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
{
	return _lrotl(x, y);
}

template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
{
	return _lrotr(x, y);
}

#endif // #ifdef _MSC_VER

#if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
// Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions

template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotl64(x, y) : x;
}

template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotr64(x, y) : x;
}

template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotl64(x, y);
}

template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotr64(x, y);
}

template<> inline word64 rotlMod<word64>(word64 x, unsigned int y)
{
	return _rotl64(x, y);
}

template<> inline word64 rotrMod<word64>(word64 x, unsigned int y)
{
	return _rotr64(x, y);
}

#endif // #if _MSC_VER >= 1310

#if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER)
// Intel C++ Compiler 10.0 gives undefined externals with these

template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotl16(x, y) : x;
}

template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotr16(x, y) : x;
}

template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotl16(x, y);
}

template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotr16(x, y);
}

template<> inline word16 rotlMod<word16>(word16 x, unsigned int y)
{
	return _rotl16(x, y);
}

template<> inline word16 rotrMod<word16>(word16 x, unsigned int y)
{
	return _rotr16(x, y);
}

template<> inline byte rotlFixed<byte>(byte x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotl8(x, y) : x;
}

template<> inline byte rotrFixed<byte>(byte x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotr8(x, y) : x;
}

template<> inline byte rotlVariable<byte>(byte x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotl8(x, y);
}

template<> inline byte rotrVariable<byte>(byte x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotr8(x, y);
}

template<> inline byte rotlMod<byte>(byte x, unsigned int y)
{
	return _rotl8(x, y);
}

template<> inline byte rotrMod<byte>(byte x, unsigned int y)
{
	return _rotr8(x, y);
}

#endif // #if _MSC_VER >= 1400

#if (defined(__MWERKS__) && TARGET_CPU_PPC)

template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return y ? __rlwinm(x,y,0,31) : x;
}

template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return y ? __rlwinm(x,32-y,0,31) : x;
}

template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return (__rlwnm(x,y,0,31));
}

template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return (__rlwnm(x,32-y,0,31));
}

template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
{
	return (__rlwnm(x,y,0,31));
}

template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
{
	return (__rlwnm(x,32-y,0,31));
}

#endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC)

// ************** endian reversal ***************

template <class T>
inline unsigned int GetByte(ByteOrder order, T value, unsigned int index)
{
	if (order == LITTLE_ENDIAN_ORDER)
		return GETBYTE(value, index);
	else
		return GETBYTE(value, sizeof(T)-index-1);
}

inline byte ByteReverse(byte value)
{
	return value;
}

inline word16 ByteReverse(word16 value)
{
#ifdef CRYPTOPP_BYTESWAP_AVAILABLE
	return bswap_16(value);
#elif defined(_MSC_VER) && _MSC_VER >= 1300
	return _byteswap_ushort(value);
#else
	return rotlFixed(value, 8U);
#endif
}

inline word32 ByteReverse(word32 value)
{
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE)
	__asm__ ("bswap %0" : "=r" (value) : "0" (value));
	return value;
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE)
	return bswap_32(value);
#elif defined(__MWERKS__) && TARGET_CPU_PPC
	return (word32)__lwbrx(&value,0);
#elif _MSC_VER >= 1400 || (_MSC_VER >= 1300 && !defined(_DLL))
	return _byteswap_ulong(value);
#elif CRYPTOPP_FAST_ROTATE(32)
	// 5 instructions with rotate instruction, 9 without
	return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff);
#else
	// 6 instructions with rotate instruction, 8 without
	value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
	return rotlFixed(value, 16U);
#endif
}

inline word64 ByteReverse(word64 value)
{
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__)
	__asm__ ("bswap %0" : "=r" (value) : "0" (value));
	return value;
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE)
	return bswap_64(value);
#elif defined(_MSC_VER) && _MSC_VER >= 1300
	return _byteswap_uint64(value);
#elif CRYPTOPP_BOOL_SLOW_WORD64
	return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32));
#else
	value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8);
	value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16);
	return rotlFixed(value, 32U);
#endif
}

inline byte BitReverse(byte value)
{
	value = ((value & 0xAA) >> 1) | ((value & 0x55) << 1);
	value = ((value & 0xCC) >> 2) | ((value & 0x33) << 2);
	return rotlFixed(value, 4U);
}

inline word16 BitReverse(word16 value)
{
	value = ((value & 0xAAAA) >> 1) | ((value & 0x5555) << 1);
	value = ((value & 0xCCCC) >> 2) | ((value & 0x3333) << 2);
	value = ((value & 0xF0F0) >> 4) | ((value & 0x0F0F) << 4);
	return ByteReverse(value);
}

inline word32 BitReverse(word32 value)
{
	value = ((value & 0xAAAAAAAA) >> 1) | ((value & 0x55555555) << 1);
	value = ((value & 0xCCCCCCCC) >> 2) | ((value & 0x33333333) << 2);
	value = ((value & 0xF0F0F0F0) >> 4) | ((value & 0x0F0F0F0F) << 4);
	return ByteReverse(value);
}

inline word64 BitReverse(word64 value)
{
#if CRYPTOPP_BOOL_SLOW_WORD64
	return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32));
#else
	value = ((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | ((value & W64LIT(0x5555555555555555)) << 1);
	value = ((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | ((value & W64LIT(0x3333333333333333)) << 2);
	value = ((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | ((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4);
	return ByteReverse(value);
#endif
}

template <class T>
inline T BitReverse(T value)
{
	if (sizeof(T) == 1)
		return (T)BitReverse((byte)value);
	else if (sizeof(T) == 2)
		return (T)BitReverse((word16)value);
	else if (sizeof(T) == 4)
		return (T)BitReverse((word32)value);
	else
	{
		assert(sizeof(T) == 8);
		return (T)BitReverse((word64)value);
	}
}

template <class T>
inline T ConditionalByteReverse(ByteOrder order, T value)
{
	return NativeByteOrderIs(order) ? value : ByteReverse(value);
}

template <class T>
void ByteReverse(T *out, const T *in, size_t byteCount)
{
	assert(byteCount % sizeof(T) == 0);
	size_t count = byteCount/sizeof(T);
	for (size_t i=0; i<count; i++)
		out[i] = ByteReverse(in[i]);
}

template <class T>
inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount)
{
	if (!NativeByteOrderIs(order))
		ByteReverse(out, in, byteCount);
	else if (in != out)
		memcpy_s(out, byteCount, in, byteCount);
}

template <class T>
inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen)
{
	const size_t U = sizeof(T);
	assert(inlen <= outlen*U);
	memcpy_s(out, outlen*U, in, inlen);
	memset_z((byte *)out+inlen, 0, outlen*U-inlen);
	ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U));
}

#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *)
{
	return block[0];
}

inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *)
{
	return (order == BIG_ENDIAN_ORDER)
		? block[1] | (block[0] << 8)
		: block[0] | (block[1] << 8);
}

inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *)
{
	return (order == BIG_ENDIAN_ORDER)
		? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24)
		: word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24);
}

inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *)
{
	return (order == BIG_ENDIAN_ORDER)
		?
		(word64(block[7]) |
		(word64(block[6]) <<  8) |
		(word64(block[5]) << 16) |
		(word64(block[4]) << 24) |
		(word64(block[3]) << 32) |
		(word64(block[2]) << 40) |
		(word64(block[1]) << 48) |
		(word64(block[0]) << 56))
		:
		(word64(block[0]) |
		(word64(block[1]) <<  8) |
		(word64(block[2]) << 16) |
		(word64(block[3]) << 24) |
		(word64(block[4]) << 32) |
		(word64(block[5]) << 40) |
		(word64(block[6]) << 48) |
		(word64(block[7]) << 56));
}

inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock)
{
	block[0] = xorBlock ? (value ^ xorBlock[0]) : value;
}

inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
		}
	}
}

inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
		}
	}
}

inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
		}
	}
}
#endif	// #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS

template <class T>
inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block)
{
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
	if (!assumeAligned)
		return UnalignedGetWordNonTemplate(order, block, (T*)NULL);
	assert(IsAligned<T>(block));
#endif
	return ConditionalByteReverse(order, *reinterpret_cast<const T *>(block));
}

template <class T>
inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block)
{
	result = GetWord<T>(assumeAligned, order, block);
}

template <class T>
inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULL)
{
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
	if (!assumeAligned)
		return UnalignedPutWordNonTemplate(order, block, value, xorBlock);
	assert(IsAligned<T>(block));
	assert(IsAligned<T>(xorBlock));
#endif
	*reinterpret_cast<T *>(block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>(xorBlock) : 0);
}

template <class T, class B, bool A=false>
class GetBlock
{
public:
	GetBlock(const void *block)
		: m_block((const byte *)block) {}

	template <class U>
	inline GetBlock<T, B, A> & operator()(U &x)
	{
		CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T));
		x = GetWord<T>(A, B::ToEnum(), m_block);
		m_block += sizeof(T);
		return *this;
	}

private:
	const byte *m_block;
};

template <class T, class B, bool A=false>
class PutBlock
{
public:
	PutBlock(const void *xorBlock, void *block)
		: m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {}

	template <class U>
	inline PutBlock<T, B, A> & operator()(U x)
	{
		PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock);
		m_block += sizeof(T);
		if (m_xorBlock)
			m_xorBlock += sizeof(T);
		return *this;
	}

private:
	const byte *m_xorBlock;
	byte *m_block;
};

template <class T, class B, bool GA=false, bool PA=false>
struct BlockGetAndPut
{
	// function needed because of C++ grammatical ambiguity between expression-statements and declarations
	static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);}
	typedef PutBlock<T, B, PA> Put;
};

template <class T>
std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER)
{
	if (!NativeByteOrderIs(order))
		value = ByteReverse(value);

	return std::string((char *)&value, sizeof(value));
}

template <class T>
T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER)
{
	T value = 0;
	memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value)));
	return NativeByteOrderIs(order) ? value : ByteReverse(value);
}

// ************** help remove warning on g++ ***************

template <bool overflow> struct SafeShifter;

template<> struct SafeShifter<true>
{
	template <class T>
	static inline T RightShift(T value, unsigned int bits)
	{
		return 0;
	}

	template <class T>
	static inline T LeftShift(T value, unsigned int bits)
	{
		return 0;
	}
};

template<> struct SafeShifter<false>
{
	template <class T>
	static inline T RightShift(T value, unsigned int bits)
	{
		return value >> bits;
	}

	template <class T>
	static inline T LeftShift(T value, unsigned int bits)
	{
		return value << bits;
	}
};

template <unsigned int bits, class T>
inline T SafeRightShift(T value)
{
	return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits);
}

template <unsigned int bits, class T>
inline T SafeLeftShift(T value)
{
	return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits);
}

// ************** use one buffer for multiple data members ***************

#define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(m_aggregate+0);}     size_t SS1() {return       sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate;

NAMESPACE_END

#endif