zdeflate.cpp 23.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
// zdeflate.cpp - written and placed in the public domain by Wei Dai

// Many of the algorithms and tables used here came from the deflate implementation
// by Jean-loup Gailly, which was included in Crypto++ 4.0 and earlier. I completely
// rewrote it in order to fix a bug that I could not figure out. This code
// is less clever, but hopefully more understandable and maintainable.

#include "pch.h"
#include "zdeflate.h"
#include <functional>

#if _MSC_VER >= 1600
// for make_unchecked_array_iterator
#include <iterator>
#endif

NAMESPACE_BEGIN(CryptoPP)

using namespace std;

LowFirstBitWriter::LowFirstBitWriter(BufferedTransformation *attachment)
	: Filter(attachment), m_counting(false), m_buffer(0), m_bitsBuffered(0), m_bytesBuffered(0)
{
}

void LowFirstBitWriter::StartCounting()
{
	assert(!m_counting);
	m_counting = true;
	m_bitCount = 0;
}

unsigned long LowFirstBitWriter::FinishCounting()
{
	assert(m_counting);
	m_counting = false;
	return m_bitCount;
}

void LowFirstBitWriter::PutBits(unsigned long value, unsigned int length)
{
	if (m_counting)
		m_bitCount += length;
	else
	{
		m_buffer |= value << m_bitsBuffered;
		m_bitsBuffered += length;
		assert(m_bitsBuffered <= sizeof(unsigned long)*8);
		while (m_bitsBuffered >= 8)
		{
			m_outputBuffer[m_bytesBuffered++] = (byte)m_buffer;
			if (m_bytesBuffered == m_outputBuffer.size())
			{
				AttachedTransformation()->PutModifiable(m_outputBuffer, m_bytesBuffered);
				m_bytesBuffered = 0;
			}
			m_buffer >>= 8;
			m_bitsBuffered -= 8;
		}
	}
}

void LowFirstBitWriter::FlushBitBuffer()
{
	if (m_counting)
		m_bitCount += 8*(m_bitsBuffered > 0);
	else
	{
		if (m_bytesBuffered > 0)
		{
			AttachedTransformation()->PutModifiable(m_outputBuffer, m_bytesBuffered);
			m_bytesBuffered = 0;
		}
		if (m_bitsBuffered > 0)
		{
			AttachedTransformation()->Put((byte)m_buffer);
			m_buffer = 0;
			m_bitsBuffered = 0;
		}
	}
}

void LowFirstBitWriter::ClearBitBuffer()
{
	m_buffer = 0;
	m_bytesBuffered = 0;
	m_bitsBuffered = 0;
}

HuffmanEncoder::HuffmanEncoder(const unsigned int *codeBits, unsigned int nCodes)
{
	Initialize(codeBits, nCodes);
}

struct HuffmanNode
{
	size_t symbol;
	union {size_t parent; unsigned depth, freq;};
};

struct FreqLessThan
{
	inline bool operator()(unsigned int lhs, const HuffmanNode &rhs) {return lhs < rhs.freq;}
	inline bool operator()(const HuffmanNode &lhs, const HuffmanNode &rhs) const {return lhs.freq < rhs.freq;}
	// needed for MSVC .NET 2005
	inline bool operator()(const HuffmanNode &lhs, unsigned int rhs) {return lhs.freq < rhs;}
};

void HuffmanEncoder::GenerateCodeLengths(unsigned int *codeBits, unsigned int maxCodeBits, const unsigned int *codeCounts, size_t nCodes)
{
	assert(nCodes > 0);
	assert(nCodes <= ((size_t)1 << maxCodeBits));

	size_t i;
	SecBlockWithHint<HuffmanNode, 2*286> tree(nCodes);
	for (i=0; i<nCodes; i++)
	{
		tree[i].symbol = i;
		tree[i].freq = codeCounts[i];
	}
	sort(tree.begin(), tree.end(), FreqLessThan());
	size_t treeBegin = upper_bound(tree.begin(), tree.end(), 0, FreqLessThan()) - tree.begin();
	if (treeBegin == nCodes)
	{	// special case for no codes
		fill(codeBits, codeBits+nCodes, 0);
		return;
	}
	tree.resize(nCodes + nCodes - treeBegin - 1);

	size_t leastLeaf = treeBegin, leastInterior = nCodes;
	for (i=nCodes; i<tree.size(); i++)
	{
		size_t least;
		least = (leastLeaf == nCodes || (leastInterior < i && tree[leastInterior].freq < tree[leastLeaf].freq)) ? leastInterior++ : leastLeaf++;
		tree[i].freq = tree[least].freq;
		tree[least].parent = i;
		least = (leastLeaf == nCodes || (leastInterior < i && tree[leastInterior].freq < tree[leastLeaf].freq)) ? leastInterior++ : leastLeaf++;
		tree[i].freq += tree[least].freq;
		tree[least].parent = i;
	}

	tree[tree.size()-1].depth = 0;
	if (tree.size() >= 2)
		for (i=tree.size()-2; i>=nCodes; i--)
			tree[i].depth = tree[tree[i].parent].depth + 1;
	unsigned int sum = 0;
	SecBlockWithHint<unsigned int, 15+1> blCount(maxCodeBits+1);
	fill(blCount.begin(), blCount.end(), 0);
	for (i=treeBegin; i<nCodes; i++)
	{
		size_t depth = STDMIN(maxCodeBits, tree[tree[i].parent].depth + 1);
		blCount[depth]++;
		sum += 1 << (maxCodeBits - depth);
	}

	unsigned int overflow = sum > (unsigned int)(1 << maxCodeBits) ? sum - (1 << maxCodeBits) : 0;

	while (overflow--)
	{
		unsigned int bits = maxCodeBits-1;
		while (blCount[bits] == 0)
			bits--;
		blCount[bits]--;
		blCount[bits+1] += 2;
		assert(blCount[maxCodeBits] > 0);
		blCount[maxCodeBits]--;
	}

	for (i=0; i<treeBegin; i++)
		codeBits[tree[i].symbol] = 0;
	unsigned int bits = maxCodeBits;
	for (i=treeBegin; i<nCodes; i++)
	{
		while (blCount[bits] == 0)
			bits--;
		codeBits[tree[i].symbol] = bits;
		blCount[bits]--;
	}
	assert(blCount[bits] == 0);
}

void HuffmanEncoder::Initialize(const unsigned int *codeBits, unsigned int nCodes)
{
	assert(nCodes > 0);
	unsigned int maxCodeBits = *max_element(codeBits, codeBits+nCodes);
	if (maxCodeBits == 0)
		return;		// assume this object won't be used

	SecBlockWithHint<unsigned int, 15+1> blCount(maxCodeBits+1);
	fill(blCount.begin(), blCount.end(), 0);
	unsigned int i;
	for (i=0; i<nCodes; i++)
		blCount[codeBits[i]]++;

	code_t code = 0;
	SecBlockWithHint<code_t, 15+1> nextCode(maxCodeBits+1);
	nextCode[1] = 0;
	for (i=2; i<=maxCodeBits; i++)
	{
		code = (code + blCount[i-1]) << 1;
		nextCode[i] = code;
	}
	assert(maxCodeBits == 1 || code == (1 << maxCodeBits) - blCount[maxCodeBits]);

	m_valueToCode.resize(nCodes);
	for (i=0; i<nCodes; i++)
	{
		unsigned int len = m_valueToCode[i].len = codeBits[i];
		if (len != 0)
			m_valueToCode[i].code = BitReverse(nextCode[len]++) >> (8*sizeof(code_t)-len);
	}
}

inline void HuffmanEncoder::Encode(LowFirstBitWriter &writer, value_t value) const
{
	assert(m_valueToCode[value].len > 0);
	writer.PutBits(m_valueToCode[value].code, m_valueToCode[value].len);
}

Deflator::Deflator(BufferedTransformation *attachment, int deflateLevel, int log2WindowSize, bool detectUncompressible)
	: LowFirstBitWriter(attachment)
	, m_deflateLevel(-1)
{
	InitializeStaticEncoders();
	IsolatedInitialize(MakeParameters("DeflateLevel", deflateLevel)("Log2WindowSize", log2WindowSize)("DetectUncompressible", detectUncompressible));
}

Deflator::Deflator(const NameValuePairs &parameters, BufferedTransformation *attachment)
	: LowFirstBitWriter(attachment)
	, m_deflateLevel(-1)
{
	InitializeStaticEncoders();
	IsolatedInitialize(parameters);
}

void Deflator::InitializeStaticEncoders()
{
	unsigned int codeLengths[288];
	fill(codeLengths + 0, codeLengths + 144, 8);
	fill(codeLengths + 144, codeLengths + 256, 9);
	fill(codeLengths + 256, codeLengths + 280, 7);
	fill(codeLengths + 280, codeLengths + 288, 8);
	m_staticLiteralEncoder.Initialize(codeLengths, 288);
	fill(codeLengths + 0, codeLengths + 32, 5);
	m_staticDistanceEncoder.Initialize(codeLengths, 32);
}

void Deflator::IsolatedInitialize(const NameValuePairs &parameters)
{
	int log2WindowSize = parameters.GetIntValueWithDefault("Log2WindowSize", DEFAULT_LOG2_WINDOW_SIZE);
	if (!(MIN_LOG2_WINDOW_SIZE <= log2WindowSize && log2WindowSize <= MAX_LOG2_WINDOW_SIZE))
		throw InvalidArgument("Deflator: " + IntToString(log2WindowSize) + " is an invalid window size");

	m_log2WindowSize = log2WindowSize;
	DSIZE = 1 << m_log2WindowSize;
	DMASK = DSIZE - 1;
	HSIZE = 1 << m_log2WindowSize;
	HMASK = HSIZE - 1;
	m_byteBuffer.New(2*DSIZE);
	m_head.New(HSIZE);
	m_prev.New(DSIZE);
	m_matchBuffer.New(DSIZE/2);
	Reset(true);

	SetDeflateLevel(parameters.GetIntValueWithDefault("DeflateLevel", DEFAULT_DEFLATE_LEVEL));
	bool detectUncompressible = parameters.GetValueWithDefault("DetectUncompressible", true);
	m_compressibleDeflateLevel = detectUncompressible ? m_deflateLevel : 0;
}

void Deflator::Reset(bool forceReset)
{
	if (forceReset)
		ClearBitBuffer();
	else
		assert(m_bitsBuffered == 0);

	m_headerWritten = false;
	m_matchAvailable = false;
	m_dictionaryEnd = 0;
	m_stringStart = 0;
	m_lookahead = 0;
	m_minLookahead = MAX_MATCH;
	m_matchBufferEnd = 0;
	m_blockStart = 0;
	m_blockLength = 0;

	m_detectCount = 1;
	m_detectSkip = 0;

	// m_prev will be initialized automaticly in InsertString
	fill(m_head.begin(), m_head.end(), 0);

	fill(m_literalCounts.begin(), m_literalCounts.end(), 0);
	fill(m_distanceCounts.begin(), m_distanceCounts.end(), 0);
}

void Deflator::SetDeflateLevel(int deflateLevel)
{
	if (!(MIN_DEFLATE_LEVEL <= deflateLevel && deflateLevel <= MAX_DEFLATE_LEVEL))
		throw InvalidArgument("Deflator: " + IntToString(deflateLevel) + " is an invalid deflate level");

	if (deflateLevel == m_deflateLevel)
		return;

	EndBlock(false);

	static const unsigned int configurationTable[10][4] = {
		/*      good lazy nice chain */
		/* 0 */ {0,    0,  0,    0},  /* store only */
		/* 1 */ {4,    3,  8,    4},  /* maximum speed, no lazy matches */
		/* 2 */ {4,    3, 16,    8},
		/* 3 */ {4,    3, 32,   32},
		/* 4 */ {4,    4, 16,   16},  /* lazy matches */
		/* 5 */ {8,   16, 32,   32},
		/* 6 */ {8,   16, 128, 128},
		/* 7 */ {8,   32, 128, 256},
		/* 8 */ {32, 128, 258, 1024},
		/* 9 */ {32, 258, 258, 4096}}; /* maximum compression */

	GOOD_MATCH = configurationTable[deflateLevel][0];
	MAX_LAZYLENGTH = configurationTable[deflateLevel][1];
	MAX_CHAIN_LENGTH = configurationTable[deflateLevel][3];

	m_deflateLevel = deflateLevel;
}

unsigned int Deflator::FillWindow(const byte *str, size_t length)
{
	unsigned int maxBlockSize = (unsigned int)STDMIN(2UL*DSIZE, 0xffffUL);

	if (m_stringStart >= maxBlockSize - MAX_MATCH)
	{
		if (m_blockStart < DSIZE)
			EndBlock(false);

		memcpy(m_byteBuffer, m_byteBuffer + DSIZE, DSIZE);

		m_dictionaryEnd = m_dictionaryEnd < DSIZE ? 0 : m_dictionaryEnd-DSIZE;
		assert(m_stringStart >= DSIZE);
		m_stringStart -= DSIZE;
		assert(!m_matchAvailable || m_previousMatch >= DSIZE);
		m_previousMatch -= DSIZE;
		assert(m_blockStart >= DSIZE);
		m_blockStart -= DSIZE;

		unsigned int i;

		for (i=0; i<HSIZE; i++)
			m_head[i] = SaturatingSubtract(m_head[i], DSIZE);

		for (i=0; i<DSIZE; i++)
			m_prev[i] = SaturatingSubtract(m_prev[i], DSIZE);
	}

	assert(maxBlockSize > m_stringStart+m_lookahead);
	unsigned int accepted = UnsignedMin(maxBlockSize-(m_stringStart+m_lookahead), length);
	assert(accepted > 0);
	memcpy(m_byteBuffer + m_stringStart + m_lookahead, str, accepted);
	m_lookahead += accepted;
	return accepted;
}

inline unsigned int Deflator::ComputeHash(const byte *str) const
{
	assert(str+3 <= m_byteBuffer + m_stringStart + m_lookahead);
	return ((str[0] << 10) ^ (str[1] << 5) ^ str[2]) & HMASK;
}

unsigned int Deflator::LongestMatch(unsigned int &bestMatch) const
{
	assert(m_previousLength < MAX_MATCH);

	bestMatch = 0;
	unsigned int bestLength = STDMAX(m_previousLength, (unsigned int)MIN_MATCH-1);
	if (m_lookahead <= bestLength)
		return 0;

	const byte *scan = m_byteBuffer + m_stringStart, *scanEnd = scan + STDMIN((unsigned int)MAX_MATCH, m_lookahead);
	unsigned int limit = m_stringStart > (DSIZE-MAX_MATCH) ? m_stringStart - (DSIZE-MAX_MATCH) : 0;
	unsigned int current = m_head[ComputeHash(scan)];

	unsigned int chainLength = MAX_CHAIN_LENGTH;
	if (m_previousLength >= GOOD_MATCH)
		chainLength >>= 2;

	while (current > limit && --chainLength > 0)
	{
		const byte *match = m_byteBuffer + current;
		assert(scan + bestLength < m_byteBuffer + m_stringStart + m_lookahead);
		if (scan[bestLength-1] == match[bestLength-1] && scan[bestLength] == match[bestLength] && scan[0] == match[0] && scan[1] == match[1])
		{
			assert(scan[2] == match[2]);
			unsigned int len = (unsigned int)(
#if defined(_STDEXT_BEGIN) && !(defined(_MSC_VER) && (_MSC_VER < 1400 || _MSC_VER >= 1600)) && !defined(_STLPORT_VERSION)
				stdext::unchecked_mismatch
#else
				std::mismatch
#endif
#if _MSC_VER >= 1600
				(stdext::make_unchecked_array_iterator(scan)+3, stdext::make_unchecked_array_iterator(scanEnd), stdext::make_unchecked_array_iterator(match)+3).first - stdext::make_unchecked_array_iterator(scan));
#else
				(scan+3, scanEnd, match+3).first - scan);
#endif
			assert(len != bestLength);
			if (len > bestLength)
			{
				bestLength = len;
				bestMatch = current;
				if (len == (scanEnd - scan))
					break;
			}
		}
		current = m_prev[current & DMASK];
	}
	return (bestMatch > 0) ? bestLength : 0;
}

inline void Deflator::InsertString(unsigned int start)
{
	unsigned int hash = ComputeHash(m_byteBuffer + start);
	m_prev[start & DMASK] = m_head[hash];
	m_head[hash] = start;
}

void Deflator::ProcessBuffer()
{
	if (!m_headerWritten)
	{
		WritePrestreamHeader();
		m_headerWritten = true;
	}

	if (m_deflateLevel == 0)
	{
		m_stringStart += m_lookahead;
		m_lookahead = 0;
		m_blockLength = m_stringStart - m_blockStart;
		m_matchAvailable = false;
		return;
	}

	while (m_lookahead > m_minLookahead)
	{
		while (m_dictionaryEnd < m_stringStart && m_dictionaryEnd+3 <= m_stringStart+m_lookahead)
			InsertString(m_dictionaryEnd++);

		if (m_matchAvailable)
		{
			unsigned int matchPosition, matchLength;
			bool usePreviousMatch;
			if (m_previousLength >= MAX_LAZYLENGTH)
				usePreviousMatch = true;
			else
			{
				matchLength = LongestMatch(matchPosition);
				usePreviousMatch = (matchLength == 0);
			}
			if (usePreviousMatch)
			{
				MatchFound(m_stringStart-1-m_previousMatch, m_previousLength);
				m_stringStart += m_previousLength-1;
				m_lookahead -= m_previousLength-1;
				m_matchAvailable = false;
			}
			else
			{
				m_previousLength = matchLength;
				m_previousMatch = matchPosition;
				LiteralByte(m_byteBuffer[m_stringStart-1]);
				m_stringStart++;
				m_lookahead--;
			}
		}
		else
		{
			m_previousLength = 0;
			m_previousLength = LongestMatch(m_previousMatch);
			if (m_previousLength)
				m_matchAvailable = true;
			else
				LiteralByte(m_byteBuffer[m_stringStart]);
			m_stringStart++;
			m_lookahead--;
		}

		assert(m_stringStart - (m_blockStart+m_blockLength) == (unsigned int)m_matchAvailable);
	}

	if (m_minLookahead == 0 && m_matchAvailable)
	{
		LiteralByte(m_byteBuffer[m_stringStart-1]);
		m_matchAvailable = false;
	}
}

size_t Deflator::Put2(const byte *str, size_t length, int messageEnd, bool blocking)
{
	if (!blocking)
		throw BlockingInputOnly("Deflator");

	size_t accepted = 0;
	while (accepted < length)
	{
		unsigned int newAccepted = FillWindow(str+accepted, length-accepted);
		ProcessBuffer();
		// call ProcessUncompressedData() after WritePrestreamHeader()
		ProcessUncompressedData(str+accepted, newAccepted);
		accepted += newAccepted;
	}
	assert(accepted == length);

	if (messageEnd)
	{
		m_minLookahead = 0;
		ProcessBuffer();
		EndBlock(true);
		FlushBitBuffer();
		WritePoststreamTail();
		Reset();
	}

	Output(0, NULL, 0, messageEnd, blocking);
	return 0;
}

bool Deflator::IsolatedFlush(bool hardFlush, bool blocking)
{
	if (!blocking)
		throw BlockingInputOnly("Deflator");

	m_minLookahead = 0;
	ProcessBuffer();
	m_minLookahead = MAX_MATCH;
	EndBlock(false);
	if (hardFlush)
		EncodeBlock(false, STORED);
	return false;
}

void Deflator::LiteralByte(byte b)
{
	if (m_matchBufferEnd == m_matchBuffer.size())
		EndBlock(false);

	m_matchBuffer[m_matchBufferEnd++].literalCode = b;
	m_literalCounts[b]++;
	m_blockLength++;
}

void Deflator::MatchFound(unsigned int distance, unsigned int length)
{
	if (m_matchBufferEnd == m_matchBuffer.size())
		EndBlock(false);

	static const unsigned int lengthCodes[] = {
		257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268, 268,
		269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272, 272, 272,
		273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274, 274, 274, 274,
		275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276, 276, 276, 276, 276,
		277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277,
		278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278,
		279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279,
		280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280,
		281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281,
		281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281,
		282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282,
		282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282,
		283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
		283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
		284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
		284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 285};
	static const unsigned int lengthBases[] = {3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258};
	static const unsigned int distanceBases[30] = 
		{1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577};

	EncodedMatch &m = m_matchBuffer[m_matchBufferEnd++];
	assert(length >= 3);
	unsigned int lengthCode = lengthCodes[length-3];
	m.literalCode = lengthCode;
	m.literalExtra = length - lengthBases[lengthCode-257];
	unsigned int distanceCode = (unsigned int)(upper_bound(distanceBases, distanceBases+30, distance) - distanceBases - 1);
	m.distanceCode = distanceCode;
	m.distanceExtra = distance - distanceBases[distanceCode];

	m_literalCounts[lengthCode]++;
	m_distanceCounts[distanceCode]++;
	m_blockLength += length;
}

inline unsigned int CodeLengthEncode(const unsigned int *begin, 
									 const unsigned int *end, 
									 const unsigned int *& p, 
									 unsigned int &extraBits, 
									 unsigned int &extraBitsLength)
{
	unsigned int v = *p;
	if ((end-p) >= 3)
	{
		const unsigned int *oldp = p;
		if (v==0 && p[1]==0 && p[2]==0)
		{
			for (p=p+3; p!=end && *p==0 && p!=oldp+138; p++) {}
			unsigned int repeat = (unsigned int)(p - oldp);
			if (repeat <= 10)
			{
				extraBits = repeat-3;
				extraBitsLength = 3;
				return 17;
			}
			else
			{
				extraBits = repeat-11;
				extraBitsLength = 7;
				return 18;
			}
		}
		else if (p!=begin && v==p[-1] && v==p[1] && v==p[2])
		{
			for (p=p+3; p!=end && *p==v && p!=oldp+6; p++) {}
			unsigned int repeat = (unsigned int)(p - oldp);
			extraBits = repeat-3;
			extraBitsLength = 2;
			return 16;
		}
	}
	p++;
	extraBits = 0;
	extraBitsLength = 0;
	return v;
}

void Deflator::EncodeBlock(bool eof, unsigned int blockType)
{
	PutBits(eof, 1);
	PutBits(blockType, 2);

	if (blockType == STORED)
	{
		assert(m_blockStart + m_blockLength <= m_byteBuffer.size());
		assert(m_blockLength <= 0xffff);
		FlushBitBuffer();
		AttachedTransformation()->PutWord16(m_blockLength, LITTLE_ENDIAN_ORDER);
		AttachedTransformation()->PutWord16(~m_blockLength, LITTLE_ENDIAN_ORDER);
		AttachedTransformation()->Put(m_byteBuffer + m_blockStart, m_blockLength);
	}
	else
	{
		if (blockType == DYNAMIC)
		{
#if defined(_MSC_VER) && !defined(__MWERKS__) && (_MSC_VER <= 1300)
			// VC60 and VC7 workaround: built-in reverse_iterator has two template parameters, Dinkumware only has one
			typedef reverse_bidirectional_iterator<unsigned int *, unsigned int> RevIt;
#elif defined(_RWSTD_NO_CLASS_PARTIAL_SPEC)
	typedef reverse_iterator<unsigned int *, random_access_iterator_tag, unsigned int> RevIt;
#else
			typedef reverse_iterator<unsigned int *> RevIt;
#endif

			FixedSizeSecBlock<unsigned int, 286> literalCodeLengths;
			FixedSizeSecBlock<unsigned int, 30> distanceCodeLengths;

			m_literalCounts[256] = 1;
			HuffmanEncoder::GenerateCodeLengths(literalCodeLengths, 15, m_literalCounts, 286);
			m_dynamicLiteralEncoder.Initialize(literalCodeLengths, 286);
			unsigned int hlit = (unsigned int)(find_if(RevIt(literalCodeLengths.end()), RevIt(literalCodeLengths.begin()+257), bind2nd(not_equal_to<unsigned int>(), 0)).base() - (literalCodeLengths.begin()+257));

			HuffmanEncoder::GenerateCodeLengths(distanceCodeLengths, 15, m_distanceCounts, 30);
			m_dynamicDistanceEncoder.Initialize(distanceCodeLengths, 30);
			unsigned int hdist = (unsigned int)(find_if(RevIt(distanceCodeLengths.end()), RevIt(distanceCodeLengths.begin()+1), bind2nd(not_equal_to<unsigned int>(), 0)).base() - (distanceCodeLengths.begin()+1));

			SecBlockWithHint<unsigned int, 286+30> combinedLengths(hlit+257+hdist+1);
			memcpy(combinedLengths, literalCodeLengths, (hlit+257)*sizeof(unsigned int));
			memcpy(combinedLengths+hlit+257, distanceCodeLengths, (hdist+1)*sizeof(unsigned int));

			FixedSizeSecBlock<unsigned int, 19> codeLengthCodeCounts, codeLengthCodeLengths;
			fill(codeLengthCodeCounts.begin(), codeLengthCodeCounts.end(), 0);
			const unsigned int *p = combinedLengths.begin(), *begin = combinedLengths.begin(), *end = combinedLengths.end();
			while (p != end)
			{
				unsigned int code, extraBits, extraBitsLength;
				code = CodeLengthEncode(begin, end, p, extraBits, extraBitsLength);
				codeLengthCodeCounts[code]++;
			}
			HuffmanEncoder::GenerateCodeLengths(codeLengthCodeLengths, 7, codeLengthCodeCounts, 19);
			HuffmanEncoder codeLengthEncoder(codeLengthCodeLengths, 19);
			static const unsigned int border[] = {    // Order of the bit length code lengths
				16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
			unsigned int hclen = 19;
			while (hclen > 4 && codeLengthCodeLengths[border[hclen-1]] == 0)
				hclen--;
			hclen -= 4;

			PutBits(hlit, 5);
			PutBits(hdist, 5);
			PutBits(hclen, 4);

			for (unsigned int i=0; i<hclen+4; i++)
				PutBits(codeLengthCodeLengths[border[i]], 3);

			p = combinedLengths.begin();
			while (p != end)
			{
				unsigned int code, extraBits, extraBitsLength;
				code = CodeLengthEncode(begin, end, p, extraBits, extraBitsLength);
				codeLengthEncoder.Encode(*this, code);
				PutBits(extraBits, extraBitsLength);
			}
		}

		static const unsigned int lengthExtraBits[] = {
			0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
			3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};
		static const unsigned int distanceExtraBits[] = {
			0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
			7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
			12, 12, 13, 13};

		const HuffmanEncoder &literalEncoder = (blockType == STATIC) ? m_staticLiteralEncoder : m_dynamicLiteralEncoder;
		const HuffmanEncoder &distanceEncoder = (blockType == STATIC) ? m_staticDistanceEncoder : m_dynamicDistanceEncoder;

		for (unsigned int i=0; i<m_matchBufferEnd; i++)
		{
			unsigned int literalCode = m_matchBuffer[i].literalCode;
			literalEncoder.Encode(*this, literalCode);
			if (literalCode >= 257)
			{
				assert(literalCode <= 285);
				PutBits(m_matchBuffer[i].literalExtra, lengthExtraBits[literalCode-257]);
				unsigned int distanceCode = m_matchBuffer[i].distanceCode;
				distanceEncoder.Encode(*this, distanceCode);
				PutBits(m_matchBuffer[i].distanceExtra, distanceExtraBits[distanceCode]);
			}
		}
		literalEncoder.Encode(*this, 256);	// end of block
	}
}

void Deflator::EndBlock(bool eof)
{
	if (m_blockLength == 0 && !eof)
		return;

	if (m_deflateLevel == 0)
	{
		EncodeBlock(eof, STORED);

		if (m_compressibleDeflateLevel > 0 && ++m_detectCount == m_detectSkip)
		{
			m_deflateLevel = m_compressibleDeflateLevel;
			m_detectCount = 1;
		}
	}
	else
	{
		unsigned long storedLen = 8*((unsigned long)m_blockLength+4) + RoundUpToMultipleOf(m_bitsBuffered+3, 8U)-m_bitsBuffered;

		StartCounting();
		EncodeBlock(eof, STATIC);
		unsigned long staticLen = FinishCounting();

		unsigned long dynamicLen;
		if (m_blockLength < 128 && m_deflateLevel < 8)
			dynamicLen = ULONG_MAX;
		else
		{
			StartCounting();
			EncodeBlock(eof, DYNAMIC);
			dynamicLen = FinishCounting();
		}

		if (storedLen <= staticLen && storedLen <= dynamicLen)
		{
			EncodeBlock(eof, STORED);

			if (m_compressibleDeflateLevel > 0)
			{
				if (m_detectSkip)
					m_deflateLevel = 0;
				m_detectSkip = m_detectSkip ? STDMIN(2*m_detectSkip, 128U) : 1;
			}
		}
		else
		{
			if (staticLen <= dynamicLen)
				EncodeBlock(eof, STATIC);
			else
				EncodeBlock(eof, DYNAMIC);

			if (m_compressibleDeflateLevel > 0)
				m_detectSkip = 0;
		}
	}

	m_matchBufferEnd = 0;
	m_blockStart += m_blockLength;
	m_blockLength = 0;
	fill(m_literalCounts.begin(), m_literalCounts.end(), 0);
	fill(m_distanceCounts.begin(), m_distanceCounts.end(), 0);
}

NAMESPACE_END