iterhash.cpp
4.29 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// iterhash.cpp - written and placed in the public domain by Wei Dai
#ifndef __GNUC__
#define CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#endif
#include "iterhash.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
template <class T, class BASE> void IteratedHashBase<T, BASE>::Update(const byte *input, size_t len)
{
HashWordType oldCountLo = m_countLo, oldCountHi = m_countHi;
if ((m_countLo = oldCountLo + HashWordType(len)) < oldCountLo)
m_countHi++; // carry from low to high
m_countHi += (HashWordType)SafeRightShift<8*sizeof(HashWordType)>(len);
if (m_countHi < oldCountHi || SafeRightShift<2*8*sizeof(HashWordType)>(len) != 0)
throw HashInputTooLong(this->AlgorithmName());
unsigned int blockSize = this->BlockSize();
unsigned int num = ModPowerOf2(oldCountLo, blockSize);
T* dataBuf = this->DataBuf();
byte* data = (byte *)dataBuf;
if (num != 0) // process left over data
{
if (num+len >= blockSize)
{
memcpy(data+num, input, blockSize-num);
HashBlock(dataBuf);
input += (blockSize-num);
len -= (blockSize-num);
num = 0;
// drop through and do the rest
}
else
{
memcpy(data+num, input, len);
return;
}
}
// now process the input data in blocks of blockSize bytes and save the leftovers to m_data
if (len >= blockSize)
{
if (input == data)
{
assert(len == blockSize);
HashBlock(dataBuf);
return;
}
else if (IsAligned<T>(input))
{
size_t leftOver = HashMultipleBlocks((T *)input, len);
input += (len - leftOver);
len = leftOver;
}
else
do
{ // copy input first if it's not aligned correctly
memcpy(data, input, blockSize);
HashBlock(dataBuf);
input+=blockSize;
len-=blockSize;
} while (len >= blockSize);
}
if (len && data != input)
memcpy(data, input, len);
}
template <class T, class BASE> byte * IteratedHashBase<T, BASE>::CreateUpdateSpace(size_t &size)
{
unsigned int blockSize = this->BlockSize();
unsigned int num = ModPowerOf2(m_countLo, blockSize);
size = blockSize - num;
return (byte *)DataBuf() + num;
}
template <class T, class BASE> size_t IteratedHashBase<T, BASE>::HashMultipleBlocks(const T *input, size_t length)
{
unsigned int blockSize = this->BlockSize();
bool noReverse = NativeByteOrderIs(this->GetByteOrder());
T* dataBuf = this->DataBuf();
do
{
if (noReverse)
this->HashEndianCorrectedBlock(input);
else
{
ByteReverse(dataBuf, input, this->BlockSize());
this->HashEndianCorrectedBlock(dataBuf);
}
input += blockSize/sizeof(T);
length -= blockSize;
}
while (length >= blockSize);
return length;
}
template <class T, class BASE> void IteratedHashBase<T, BASE>::PadLastBlock(unsigned int lastBlockSize, byte padFirst)
{
unsigned int blockSize = this->BlockSize();
unsigned int num = ModPowerOf2(m_countLo, blockSize);
T* dataBuf = this->DataBuf();
byte* data = (byte *)dataBuf;
data[num++] = padFirst;
if (num <= lastBlockSize)
memset(data+num, 0, lastBlockSize-num);
else
{
memset(data+num, 0, blockSize-num);
HashBlock(dataBuf);
memset(data, 0, lastBlockSize);
}
}
template <class T, class BASE> void IteratedHashBase<T, BASE>::Restart()
{
m_countLo = m_countHi = 0;
Init();
}
template <class T, class BASE> void IteratedHashBase<T, BASE>::TruncatedFinal(byte *digest, size_t size)
{
this->ThrowIfInvalidTruncatedSize(size);
T* dataBuf = this->DataBuf();
T* stateBuf = this->StateBuf();
unsigned int blockSize = this->BlockSize();
ByteOrder order = this->GetByteOrder();
PadLastBlock(blockSize - 2*sizeof(HashWordType));
dataBuf[blockSize/sizeof(T)-2+order] = ConditionalByteReverse(order, this->GetBitCountLo());
dataBuf[blockSize/sizeof(T)-1-order] = ConditionalByteReverse(order, this->GetBitCountHi());
HashBlock(dataBuf);
if (IsAligned<HashWordType>(digest) && size%sizeof(HashWordType)==0)
ConditionalByteReverse<HashWordType>(order, (HashWordType *)digest, stateBuf, size);
else
{
ConditionalByteReverse<HashWordType>(order, stateBuf, stateBuf, this->DigestSize());
memcpy(digest, stateBuf, size);
}
this->Restart(); // reinit for next use
}
#ifdef __GNUC__
template class IteratedHashBase<word64, HashTransformation>;
template class IteratedHashBase<word64, MessageAuthenticationCode>;
template class IteratedHashBase<word32, HashTransformation>;
template class IteratedHashBase<word32, MessageAuthenticationCode>;
#endif
NAMESPACE_END