ReportGraphs.R
34.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#----------------------------------------------------------------
#-------------------------General evolution----------------------
#----------------------------------------------------------------
#' Return graph representing the general attacks evolution by year
#'
#' @param Attacks data.frame with procesed source data
#' @param point.vjust Vector of vertical just to each point label
#' @param point.hjust Vector of Horizontal just to each point label
#' @param iso2013.y Vertical position to ISO27001:2013 label
#' @param iso2013.label.hjust Horizontal just to ISO27001:2013 label
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetAttacksEvolution <- function(Attacks,
point.vjust = 0,
point.hjust = 0,
iso2013.y = 0,
iso2013.label.hjust = 0,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Extracting year from date
attacks.evol <- dplyr::mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
dplyr::group_by(Year)#Grouping by year
#Counting attacks each year
attacks.evol <- as.data.frame(table(attacks.evol$Year))
colnames(attacks.evol) <- c("Year","Attacks")
#Slope of smooth
attacks.evol.slope <- lm(formula = Attacks ~ as.numeric(Year),
data = attacks.evol)$coef[[2]]
#Graph
attacks.evol.graph <- ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = 1,
xlab = "Years",
ylab = "Attacks",
data = attacks.evol,
geom = "line") +
ggplot2::geom_point() +
ggplot2::geom_label(aes(label=attacks.evol$Attacks),
vjust = point.vjust,
hjust = point.hjust)+
ggplot2::theme(plot.title = element_text(hjust = 0.5)) +
ggplot2::geom_smooth(method = "lm", se = FALSE) +
ggplot2::geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =",
signif(attacks.evol.slope))),
color = "blue",
hjust = smooth.label.hjust) +
ggplot2::geom_vline(xintercept = 3,
color = "Red",
linetype = "longdash") +
ggplot2::geom_label(aes(x = "2014", y = iso2013.y,
label = "ISO27001:2013 effects"),
color = "Red",
hjust = iso2013.label.hjust)
list(attacks.evol.graph, attacks.evol.slope)
}
#' Return graph representing the general ISO27001 evolution
#'
#' @param Cert_PerCountry data.frame with procesed source data
#' @param point.vjust Vector of vertical just to each point label
#' @param point.hjust Vector of Horizontal just to each point label
#' @param iso2013.y Vertical position to ISO27001:2013 label
#' @param iso2013.label.hjust Horizontal just to ISO27001:2013 label
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetCertsEvolution <- function(Cert_PerCountry,
point.vjust = 0,
point.hjust = 0,
iso2013.y = 0,
iso2013.label.hjust = 0,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Years from columns to rows in 1 column
Certs.evol <- tidyr::gather(Cert_PerCountry, "Year", "Count", 2:6)
#Group by year
Certs.evol <- dplyr::group_by(Certs.evol, Year)
#Sum counts to 1 row for each year
Certs.evol <- dplyr::summarise(Certs.evol, Count = sum(Count))
#Removing X from years
Certs.evol$Year <- substr(Certs.evol$Year, 2, 5)
#Slope of smooth
Certs.evol.slope <- lm(formula = Count ~ as.numeric(Year),
data = Certs.evol)$coef[[2]]
#Graph
Certs.evol.graph <- ggplot2::qplot(main = "ISO 27001 evolution",
x = Certs.evol$Year,
y = Certs.evol$Count,
group = 1,
xlab = "Years",
ylab = "Certifications",
data = Certs.evol,
geom = "line") +
geom_point() +
geom_label(aes(label=Certs.evol$Count),
vjust = point.vjust,
hjust = point.hjust)+
theme(plot.title = element_text(hjust = 0.5)) +
ggplot2::geom_smooth(method = "lm", se = FALSE) +
ggplot2::geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =",
signif(Certs.evol.slope))),
color = "blue",
hjust = smooth.label.hjust)+
ggplot2::geom_vline(xintercept = 3,
color = "Red",
linetype = "longdash") +
ggplot2::geom_label(aes(x = "2014", y = iso2013.y,
label = "ISO27001:2013 changes"),
color = "Red",
hjust = iso2013.label.hjust)
list(Certs.evol.graph, Certs.evol.slope)
}
#' Return graph representing the general attacks evolution by month
#'
#' @param Attacks data.frame with procesed source data
#'
#' @return graph
#' @export
GetAttacksMonthEvolution <- function(Attacks){
#Extract Year - Month from date
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y-%m")) %>%
group_by(Year)
#Group by Year - Month
attacks.evol <- as.data.frame(table(attacks.evol$Year))
colnames(attacks.evol) <- c("Year","Attacks")
#Graph
ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = 1,
xlab = "Months",
ylab = "Attacks",
data = attacks.evol,
geom = "line") +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
geom_smooth(method = 'loess') +
scale_x_discrete(labels = c("2012/01", "", "", "", "", "", "2012/07", "", "", "", "", "",
"2013/01", "", "", "", "", "", "2013/07", "", "", "", "", "",
"2014/01", "", "", "", "", "", "2014/07", "", "", "", "", "",
"2015/01", "", "", "", "", "", "2015/07", "", "", "", "", "",
"2016/01", "", "", "", "", "", "2016/07", "", "", "", "", ""))
}
#----------------------------------------------------------------
#-------------------------Attack type evolution------------------
#----------------------------------------------------------------
#' Return pie graph to show % of each attack type
#'
#' @param Attacks data.frame with procesed source data
#' @param label.vjust Vector of vertical just to each portion label
#' @param label.hjust Vector of horizontal just to each portion label
#'
#' @return list(graph, AttackTypeShowedList)
#' @export
GetAttackTypePie <- function (Attacks,
label.vjust = 0,
label.hjust = 0){
#Group by attack type
attack.pie <- group_by(Attacks, Attack.standar)
#Counting rows for each attack type
attack.pie <- as.data.frame(table(attack.pie$Attack.standar))
attack.pie <- setNames(attack.pie, c("Attack", "Count"))
#Removing rows without attack type defined
attack.pie <- attack.pie[attack.pie$Attack != "",]
#Removing attacks with less than 1% of representation from total
attack.pie <- attack.pie[attack.pie$Count > (sum(attack.pie$Count) * 0.01),]
#Calc % of each attack type
attack.pie <- mutate(attack.pie, Perc=paste(round(100 * attack.pie$Count / sum(attack.pie$Count), 2), "%"))
#Graph
graph1 <- ggplot(data=attack.pie,
aes(x=factor(1),
y=Count,
fill=Attack)) +
geom_col(width = 1, color='black') +
geom_label(aes(label = attack.pie$Perc),
vjust = label.vjust,
hjust = label.hjust) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("Attack types")
#Returning graph and attack list
list(graph1, unique(attack.pie$Attack))
}
#' Return graph to show the evolution of a attack types list
#'
#' @param Attacks data.frame with procesed source data
#' @param TypeList List with attack types to show
#'
#' @return list(graph, data.frame with TypeList attacks data by year)
#' @export
GetAttackTypeEvolution <- function(Attacks, TypeList){
#Obtaining year from date
Attacks.pre <- dplyr::mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
group_by(Year, Attack.standar) #group by attack type
#Count rows for each attack type and each year
Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
#Removing rows without an attack type specified
Attacks.pre <- Attacks.pre[Attacks.pre$Attack %in% TypeList,]
#Graph
graph1 <- ggplot(data = Attacks.pre,
aes(x = Year,
y = Count,
color = Attack,
group = Attack)) +
geom_point() +
geom_line() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Attack type evolution") +
labs(colour = "Attack type") + xlab("Years") + ylab("Attacks")
#Return graph and used data to separate representation
list(graph1, Attacks.pre)
}
#' Return graph to show the evolution of a single attack type and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param AttackType Attack type to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetAttackTypeSigleEvolution <- function(Attacks,
AttackType,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Filtering for the AttackType specified
attacks.evol <- Attacks[Attacks$Attack == AttackType,]
#Cal slope
slope1 <- lm(formula = Count ~ as.numeric(Year), data = attacks.evol)$coef[[2]]
#Graph
graph1 <- ggplot(data = attacks.evol,
aes(x = Year, y = Count, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle(AttackType) +
xlab("Years") + ylab("Attacks")+
geom_smooth(method = "lm",
se = FALSE) +
geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =", signif(slope1, 5))),
color = "blue",
hjust = smooth.label.hjust)
#Returning list(graph, slope)
list(graph1, slope1)
}
#----------------------------------------------------------------
#-------------------------Geolocal evolution---------
#----------------------------------------------------------------
#' Return pie graph to show % of attacks and certifications for each continent
#'
#' @param Attacks data.frame with procesed source data of attacks
#' @param Attacks.label.vjust Vector of vertical just to each portion label
#' @param Attacks.label.hjust Vector of horizontal just to each portion label
#' @param Cert_PerCountry data.frame with procesed source data of certifications
#' @param Certs.label.vjust Vector of vertical just to each portion label
#' @param Certs.label.hjust Vector of horizontal just to each portion label
#'
#' @return list(AttacksGraph, CertsGraph, ContinentListToStudy)
#' @export
GetContinentPie <- function (Attacks,
Attacks.label.vjust = 0,
Attacks.label.hjust = 0,
Cert_PerCountry,
Certs.label.vjust = 0,
Certs.label.hjust = 0){
#Group attacks by continent
attack.pie <- group_by(Attacks, Continent)
#Count attacks for each continent
attack.pie <- as.data.frame(table(attack.pie$Continent))
attack.pie <- setNames(attack.pie, c("Continent", "Count"))
#Remove rows without Continent specified
attack.pie <- attack.pie[attack.pie$Continent != "",]
#Calc % of each continent
attack.pie <- mutate(attack.pie, perc = round(100 * attack.pie$Count / sum(attack.pie$Count), 2))
#Attacks graph
graph1 <- ggplot(data=attack.pie,
aes(x=factor(1),
y=Count,
fill=Continent)) +
geom_col(width = 1, color='black') +
geom_label(aes(label=paste(attack.pie$perc, "%")),
vjust = Attacks.label.vjust,
hjust = Attacks.label.hjust) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("Attacks")
#Grouping certifications by continent
cert.pie <- group_by(Cert_PerCountry, Continent)
#Counting certificates for each continent
cert.pie <- dplyr::summarise(cert.pie, Count = sum(X2011 + X2012 + X2013 + X2014 + X2015))
#Remove rows without Continent specified
cert.pie <- cert.pie[cert.pie$Continent != "",]
#Calc % of each continent
cert.pie <- mutate(cert.pie, perc = round(100 * cert.pie$Count / sum(cert.pie$Count), 2))
#Certifications graph
graph2 <- ggplot(data=cert.pie,
aes(x=factor(1),
y=Count,
fill=Continent)) +
geom_col(width = 1, color='black') +
geom_label(aes(label=paste(cert.pie$perc, "%")),
vjust = Certs.label.vjust,
hjust = Certs.label.hjust) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("ISO 27001")
#Return graphs and union of continent to study
list(graph1, graph2,
union(unique(attack.pie[attack.pie$perc > 5,]$Continent),
unique(cert.pie[cert.pie$perc > 5,]$Continent)))
}
#' Return graph to show the evolution of a attack types list
#'
#' @param Attacks data.frame with procesed source data
#' @param ContinentList List with continents to show
#'
#' @return list(graph, data.frame with ContinentList attacks data by year)
#' @export
GetContinentAttacksEvolution <- function(Attacks,
ContinentList){
#Extract year from date
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
group_by(Continent, Year) #Grouping atacks by continent and year
#Counting attacks for each continent and year
attacks.evol <- as.data.frame(table(attacks.evol$Continent, attacks.evol$Year))
colnames(attacks.evol) <- c("Continent", "Year","Attacks")
#Filtering by the ContinentList especified
attacks.evol <- attacks.evol[attacks.evol$Continent %in% ContinentList,]
#Graph
graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = Continent,
xlab = "Years",
ylab = "Attacks",
data = attacks.evol,
geom = "point",
color = Continent) +
geom_line() +
theme(plot.title = element_text(hjust = 0.5))
#Return graph and data to represent 1b1
list(graph1, attacks.evol)
}
#' Return graph to show the evolution of certifications in a continent list
#'
#' @param Cert_PerCountry data.frame with procesed source data
#' @param ContinentList List with continents to show
#'
#' @return list(graph, data.frame with ContinentList certifications data by year)
#' @export
GetContinentCertsEvolution <- function(Cert_PerCountry,
ContinentList){
#Collapsing year columns to 1 column with year value
certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>%
group_by(Continent, Year) #Grouping by continent and year
#Sum of certifications for echa continent and year
certs.evol <- summarise(certs.evol, Certs = sum(Certs))
#Removing the X from year values
certs.evol$Year <- substr(certs.evol$Year,2,5)
#Filtering for the specified continents
certs.evol <- certs.evol[certs.evol$Continent %in% ContinentList,]
#graph
graph1 <- ggplot2::qplot(main = "ISO 27001 evolution",
x = certs.evol$Year,
y = certs.evol$Certs,
group = Continent,
xlab = "Years",
ylab = "Certifications",
data = certs.evol,
geom = "point",
color = Continent) +
geom_line() +
theme(plot.title = element_text(hjust = 0.5))
#Return the graph and data to represent continents 1b1
list(graph1, certs.evol)
}
#' Return graph to show the evolution of attacks in a single continent and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param Continent Continent to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetContinentAttacksSigleEvolution <- function(Attacks,
Continent,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Filtering for the continent specified
attacks.evol <- Attacks[Attacks$Continent == Continent,]
#Calc slope
slope1 <- lm(formula = Attacks ~ as.numeric(Year), data = attacks.evol)$coef[[2]]
#Graph
graph1 <- ggplot(data = attacks.evol,
aes(x = Year, y = Attacks, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle(Continent) +
xlab("Years") + ylab("Attacks")+
geom_smooth(method = "lm",
se = FALSE) +
geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =", signif(slope1, 5))),
color = "blue",
hjust = smooth.label.hjust)
#Returning list(graph, slope)
list(graph1, slope1)
}
#' Return graph to show the evolution of certifications in a single continent and his smooth
#'
#' @param Certs_byContinent data.frame with procesed source data
#' @param Continent Continent to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetContinentCertsSingleEvolution <- function(Certs_byContinent,
Continent,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Filtering for the continent specified
certs.evol <- Certs_byContinent[Certs_byContinent$Continent == Continent,]
#Calc slope
slope1 <- lm(formula = Certs ~ as.numeric(Year), data = certs.evol)$coef[[2]]
#Graph
graph1 <- ggplot(data = certs.evol,
aes(x = Year, y = Certs, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle(Continent) +
xlab("Years") + ylab("Certifications")+
geom_smooth(method = "lm",
se = FALSE) +
geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =", signif(slope1, 5))),
color = "blue",
hjust = smooth.label.hjust)
#Returning list(graph, slope)
list(graph1, slope1)
}
#' Return graph to show the attacks by country
#'
#' @param Attacks data.frame with procesed source data of attacks
#' @param Attacks.label.vjust Vector of vertical just to each portion label
#' @param Attacks.label.hjust Vector of horizontal just to each portion label
#' @param Cert_PerCountry data.frame with procesed source certifications
#' @param Certs.label.vjust Vector of vertical just to each portion label
#' @param Certs.label.hjust Vector of horizontal just to each portion label
#'
#' @return list(AttacksGraph, CertsGraph, CountryListToStudy)
GetCountriesCol <- function(Attacks,
Attacks.label.vjust = 0,
Attacks.label.hjust = 0,
Cert_PerCountry,
Certs.label.vjust = 0,
Certs.label.hjust = 0){
#Group attacks by continent and country
attacks.col <- group_by(Attacks, Continent, Country)
#Count attacks for each country
attacks.col <- as.data.frame(table(attacks.col$Continent, attacks.col$Country))
attacks.col <- setNames(attacks.col, c("Continent", "Country", "Count"))
#Remove rows without Continent/Country specified
attacks.col <- attacks.col[attacks.col$Country != "",]
attacks.col <- attacks.col[attacks.col$Country != "AU",] #Abnormal behaivour, corrupt??
attacks.col <- attacks.col[attacks.col$Continent != "",]
#Only the countries with more than 2% of total attacks
attacks.col <- attacks.col[attacks.col$Count > (sum(attacks.col$Count) * 0.015), ]
#Sort by attacks
attacks.col <- arrange(attacks.col, desc(Count))
#Attacks graph
graph1 <- ggplot2::ggplot(aes(x = reorder(Country, Count),
y = Count),
data = attacks.col) +
geom_col(aes(fill = Continent)) +
geom_text(aes(label = attacks.col$Count),
vjust = Attacks.label.vjust,
hjust = Attacks.label.hjust,
size = 3) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Attacks") +
xlab("Country") + ylab("Attacks")
#Grouping certifications by continent
certs.col <- group_by(Cert_PerCountry, Continent, country_short)
#Counting certificates for each continent
certs.col <- dplyr::summarise(certs.col, Count = sum(X2011 + X2012 + X2013 + X2014 + X2015))
#Remove rows without Continent specified
certs.col <- certs.col[certs.col$Continent != "",]
certs.col <- certs.col[certs.col$country_short != "",]
#Only the countries with more than 2% of total certs
certs.col <- certs.col[certs.col$Count > (sum(certs.col$Count) * 0.02), ]
#Sort by certifications
certs.col <- arrange(certs.col, desc(Count))
#Certifications graph
graph2 <- ggplot2::ggplot(aes(x = reorder(country_short, Count),
y = Count),
data = certs.col) +
geom_col(aes(fill = Continent)) +
geom_text(aes(label = certs.col$Count),
vjust = Certs.label.vjust,
hjust = Certs.label.hjust,
size = 3) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("ISO 27001") +
xlab("Country") + ylab("Certifications")
#Return graphs and union of countries to study
list(graph1, graph2,
union(unique(head(attacks.col$Country, 3)),
unique(head(certs.col$country_short, 3))))
}
#' Return graph to show the evolution of attacks in a single continent and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param Country Country to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetCountriesAttacksSingleEvolution <- function(Attacks,
Country,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Extract year from date
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
group_by(Year, Country) #Group by country
#Count attacks for each year and country
attacks.evol <- as.data.frame(table(attacks.evol$Year, attacks.evol$Country))
attacks.evol <- setNames(attacks.evol, c("Year", "Country", "Count"))
#Filter by the specified country
attacks.evol <- attacks.evol[attacks.evol$Country == Country,]
#Calc slope
slope1 <- lm(formula = Count ~ as.numeric(Year), data = attacks.evol)$coef[[2]]
#Graph
graph1 <- ggplot(data = attacks.evol,
aes(x = Year, y = Count, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle(paste("Cyberattacks -", Country)) +
xlab("Years") + ylab("Attacks")+
geom_smooth(method = "lm",
se = FALSE) +
geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =", signif(slope1, 5))),
color = "blue",
hjust = smooth.label.hjust)
#Return list(graph, slope)
list(graph1, slope1)
}
#' Return graph to show the evolution of certifications in a single continent and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param Country Country to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetCountriesCertsSingleEvolution <- function(Cert_PerCountry,
Country,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Collapsing year columns to only one with the year value
certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>%
group_by(country_short, Year) #Group by country and year
#sum certificates for each country and year
certs.evol <- summarise(certs.evol,
Certs = sum(Certs))
#Removing the X of the year values
certs.evol$Year <- substr(certs.evol$Year,2,5)
#Filter by the specified Country
certs.evol <- certs.evol[certs.evol$country_short == Country,]
#Calc slope
slope1 <- lm(formula = Certs ~ as.numeric(Year), data = certs.evol)$coef[[2]]
#Graph
graph1 <- ggplot(data = certs.evol,
aes(x = Year, y = Certs, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle(paste("ISO 27001 -", Country)) +
xlab("Years") + ylab("Certifications")+
geom_smooth(method = "lm",
se = FALSE) +
geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =", signif(slope1, 5))),
color = "blue",
hjust = smooth.label.hjust)
#Return graph and slope
list(graph1, slope1)
}
#----------------------------------------------------------------
#-------------------------gelocal/type---------------------------
#----------------------------------------------------------------
#' Return graph representing % of attacks type by continent
#'
#' @param Attacks data.frame with procesed source data
#' @param Country Country to represent on the left side
#' @param Country2 Country to represent on the right side
#'
#' @return Graph
#' @export
GetContinentAttackCol <- function (Attacks,
Country,
Country2){
#Grouping attacks by attack type and country
attack.pie <- group_by(Attacks, Attack.standar, Country)
#Counting attacks for each attack type and country
attack.pie <- as.data.frame(table(attack.pie$Country, attack.pie$Attack.standar))
attack.pie <- setNames(attack.pie, c("Country", "Attack", "Count"))
#Remove rows withouth a country specified
attack.pie <- attack.pie[attack.pie$Country != "",]
#Remove rows withouth attack type specified
attack.pie <- attack.pie[attack.pie$Attack != "",]
#grouping non 'important' attack types in 'Otros'
attack.pie$Attack <- as.character(attack.pie$Attack)
attack.pie[attack.pie$Attack != "DDoS" &
attack.pie$Attack != "Defacement" &
attack.pie$Attack != "Injection",]$Attack <- "Otros"
attack.pie$Attack <- as.factor(attack.pie$Attack)
#Grouping atatcks by attacky type and country
attack.pie <- group_by(attack.pie, Attack, Country)
#sum attacks for each attack type and country
attack.pie <- summarise(attack.pie, Count = sum(Count))
#Filtering by the desired countries
attack.pie.C1 <- attack.pie[attack.pie$Country == Country,]
attack.pie.C2 <- attack.pie[attack.pie$Country == Country2,]
#Calc % of each attack type
attack.pie.C1$perc <- round(100 * attack.pie.C1$Count / sum(attack.pie.C1$Count), 2)
attack.pie.C2$perc <- round(100 * attack.pie.C2$Count / sum(attack.pie.C2$Count), 2)
#Calc max % to draw gray background
attack.pie.max <- data.frame(Attack = attack.pie.C1$Attack)
percs <- c()
for (AT in attack.pie.max$Attack){
percs <- c(percs, max(attack.pie.C1[attack.pie.C1$Attack == AT,]$perc,
attack.pie.C2[attack.pie.C2$Attack == AT,]$perc))
}
attack.pie.max$perc <- percs
graph1 <- ggplot() +
geom_col(aes(x=Attack,
y=perc),
width = 1,
data = attack.pie.max,
color = "Black",
fill = "Grey") +
geom_col(aes(x=1.25:4.25,
y=perc,
fill = Country),
width = 0.4,
data = attack.pie.C1) +
geom_text(aes(x=1.25:4.25,
y=perc + 1,
label = paste(perc, "%")),
data = attack.pie.C1) +
geom_col(aes(x=0.75:3.75,
y=perc,
fill = Country2),
width = 0.4,
data = attack.pie.C2) +
geom_text(aes(x=0.75:3.75,
y=perc + 1,
label = paste(perc, "%")),
data = attack.pie.C2) +
scale_x_discrete("Attack", attack.pie.C1$Attack) +
ylab("% of total attacks") +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle(paste(Country, Country2, sep = " - "))
graph1
}
#' Return graph representing the evolution of attack types in a country
#'
#' @param Attacks data.frame with procesed source data
#' @param Country Country to represent
#'
#' @return list(Graph, data to represent attacktypes of the country 1b1)
GetContinentAttackEvolution <- function(Attacks, Country){
#Extract Year from date
attack.evol <-mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
group_by(Attack.standar, Country, Year) #Group by attack type, country and year
#Counting the attacks for each attack type, country and year
attack.evol <- as.data.frame(table(attack.evol$Country, attack.evol$Attack.standar, attack.evol$Year))
attack.evol <- setNames(attack.evol, c("Country", "Attack", "Year", "Count"))
#Removing rows without country or attack type
attack.evol <- attack.evol[attack.evol$Country != "",]
attack.evol <- attack.evol[attack.evol$Attack != "",]
#grouping non 'important' attack types in 'Otros'
attack.evol$Attack <- as.character(attack.evol$Attack)
attack.evol[attack.evol$Attack != "DDoS" &
attack.evol$Attack != "Defacement" &
attack.evol$Attack != "Injection",]$Attack <- "Otros"
attack.evol$Attack <- as.factor(attack.evol$Attack)
#Counting attacks of new tyoe
attack.evol <- group_by(attack.evol, Attack, Country, Year)
attack.evol <- summarise(attack.evol, Count = sum(Count))
#Filtering by specified country
attack.evol <- attack.evol[attack.evol$Country == Country,]
#Graph
graph1 <- ggplot2::qplot(main = Country,
x = attack.evol$Year,
y = attack.evol$Count,
group = attack.evol$Attack,
xlab = "Years",
ylab = "Attacks",
data = attack.evol,
geom = "point",
color = Attack) +
geom_line() +
theme(plot.title = element_text(hjust = 0.5))
#list with graph and processed data to represent 1b1
list(graph1, attack.evol)
}