ReportGraphs.R 34.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

#----------------------------------------------------------------
#-------------------------General evolution----------------------
#----------------------------------------------------------------


#' Return graph representing the general attacks evolution by year
#'
#' @param Attacks data.frame with procesed source data
#' @param point.vjust Vector of vertical just to each point label
#' @param point.hjust Vector of Horizontal just to each point label
#' @param iso2013.y Vertical position to ISO27001:2013 label
#' @param iso2013.label.hjust Horizontal just to ISO27001:2013 label
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetAttacksEvolution <- function(Attacks,
                                point.vjust = 0,
                                point.hjust = 0,
                                iso2013.y = 0,
                                iso2013.label.hjust = 0,
                                smooth.x = 0,
                                smooth.y = 0,
                                smooth.label.hjust = 0){

  #Extracting year from date
  attacks.evol <- dplyr::mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
                  dplyr::group_by(Year)#Grouping by year
  #Counting attacks each year
  attacks.evol <- as.data.frame(table(attacks.evol$Year))
  colnames(attacks.evol) <- c("Year","Attacks")

  #Slope of smooth
  attacks.evol.slope <- lm(formula = Attacks ~ as.numeric(Year),
                           data = attacks.evol)$coef[[2]]
  #Graph
  attacks.evol.graph <- ggplot2::qplot(main = "Cyberattacks evolution",
                                       x = attacks.evol$Year,
                                       y = attacks.evol$Attacks,
                                       group = 1,
                                       xlab = "Years",
                                       ylab = "Attacks",
                                       data = attacks.evol,
                                       geom = "line")  +
                        ggplot2::geom_point() +
                        ggplot2::geom_label(aes(label=attacks.evol$Attacks),
                                   vjust = point.vjust,
                                   hjust = point.hjust)+
                        ggplot2::theme(plot.title = element_text(hjust = 0.5)) +
                        ggplot2::geom_smooth(method = "lm", se = FALSE) +
                        ggplot2::geom_label(aes(x = smooth.x, y = smooth.y,
                                       label = paste("Slope =",
                                                     signif(attacks.evol.slope))),
                                   color = "blue",
                                   hjust = smooth.label.hjust) +
                        ggplot2::geom_vline(xintercept = 3,
                                            color = "Red",
                                            linetype = "longdash") +
                        ggplot2::geom_label(aes(x = "2014", y = iso2013.y,
                                                label = "ISO27001:2013 effects"),
                                            color = "Red",
                                            hjust = iso2013.label.hjust)

  list(attacks.evol.graph, attacks.evol.slope)

}

#' Return graph representing the general ISO27001 evolution
#'
#' @param Cert_PerCountry data.frame with procesed source data
#' @param point.vjust Vector of vertical just to each point label
#' @param point.hjust Vector of Horizontal just to each point label
#' @param iso2013.y Vertical position to ISO27001:2013 label
#' @param iso2013.label.hjust Horizontal just to ISO27001:2013 label
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetCertsEvolution <- function(Cert_PerCountry,
                              point.vjust = 0,
                              point.hjust = 0,
                              iso2013.y = 0,
                              iso2013.label.hjust = 0,
                              smooth.x = 0,
                              smooth.y = 0,
                              smooth.label.hjust = 0){

  #Years from columns to rows in 1 column
  Certs.evol <- tidyr::gather(Cert_PerCountry, "Year", "Count", 2:6)
  #Group by year
  Certs.evol <- dplyr::group_by(Certs.evol, Year)
  #Sum counts to 1 row for each year
  Certs.evol <- dplyr::summarise(Certs.evol, Count = sum(Count))
  #Removing X from years
  Certs.evol$Year <- substr(Certs.evol$Year, 2, 5)

  #Slope of smooth
  Certs.evol.slope <- lm(formula = Count ~ as.numeric(Year),
                           data = Certs.evol)$coef[[2]]
  #Graph
  Certs.evol.graph <- ggplot2::qplot(main = "ISO 27001 evolution",
                           x = Certs.evol$Year,
                           y = Certs.evol$Count,
                           group = 1,
                           xlab = "Years",
                           ylab = "Certifications",
                           data = Certs.evol,
                          geom = "line") +
            geom_point() +
            geom_label(aes(label=Certs.evol$Count),
                       vjust = point.vjust,
                       hjust = point.hjust)+
            theme(plot.title = element_text(hjust = 0.5)) +
            ggplot2::geom_smooth(method = "lm", se = FALSE) +
            ggplot2::geom_label(aes(x = smooth.x, y = smooth.y,
                                    label = paste("Slope =",
                                                  signif(Certs.evol.slope))),
                                color = "blue",
                                hjust = smooth.label.hjust)+
            ggplot2::geom_vline(xintercept = 3,
                                color = "Red",
                                linetype = "longdash") +
            ggplot2::geom_label(aes(x = "2014", y = iso2013.y,
                                    label = "ISO27001:2013 changes"),
                                color = "Red",
                                hjust = iso2013.label.hjust)

  list(Certs.evol.graph, Certs.evol.slope)

}

#' Return graph representing the general attacks evolution by month
#'
#' @param Attacks data.frame with procesed source data
#'
#' @return graph
#' @export
GetAttacksMonthEvolution <- function(Attacks){

  #Extract Year - Month from date
  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y-%m")) %>%
                  group_by(Year)
  #Group by Year - Month
  attacks.evol <- as.data.frame(table(attacks.evol$Year))
  colnames(attacks.evol) <- c("Year","Attacks")

  #Graph
  ggplot2::qplot(main = "Cyberattacks evolution",
                 x = attacks.evol$Year,
                 y = attacks.evol$Attacks,
                 group = 1,
                 xlab = "Months",
                 ylab = "Attacks",
                 data = attacks.evol,
                 geom = "line")  +
    geom_point() +
    theme(plot.title = element_text(hjust = 0.5)) +
    geom_smooth(method = 'loess') +
    scale_x_discrete(labels = c("2012/01", "", "", "", "", "", "2012/07", "", "", "", "", "",
                                "2013/01", "", "", "", "", "", "2013/07", "", "", "", "", "",
                                "2014/01", "", "", "", "", "", "2014/07", "", "", "", "", "",
                                "2015/01", "", "", "", "", "", "2015/07", "", "", "", "", "",
                                "2016/01", "", "", "", "", "", "2016/07", "", "", "", "", ""))


}

#----------------------------------------------------------------
#-------------------------Attack type evolution------------------
#----------------------------------------------------------------


#' Return pie graph to show % of each attack type
#'
#' @param Attacks data.frame with procesed source data
#' @param label.vjust Vector of vertical just to each portion label
#' @param label.hjust Vector of horizontal just to each portion label
#'
#' @return list(graph, AttackTypeShowedList)
#' @export
GetAttackTypePie <- function (Attacks,
                              label.vjust = 0,
                              label.hjust = 0){

  #Group by attack type
  attack.pie <- group_by(Attacks, Attack.standar)
  #Counting rows for each attack type
  attack.pie <- as.data.frame(table(attack.pie$Attack.standar))
  attack.pie <- setNames(attack.pie, c("Attack", "Count"))

  #Removing rows without attack type defined
  attack.pie <- attack.pie[attack.pie$Attack != "",]
  #Removing attacks with less than 1% of representation from total
  attack.pie <- attack.pie[attack.pie$Count > (sum(attack.pie$Count) * 0.01),]
  #Calc % of each attack type
  attack.pie <- mutate(attack.pie, Perc=paste(round(100 * attack.pie$Count / sum(attack.pie$Count), 2), "%"))


  #Graph
  graph1 <- ggplot(data=attack.pie,
                  aes(x=factor(1),
                   y=Count,
                   fill=Attack)) +
            geom_col(width = 1, color='black') +
            geom_label(aes(label = attack.pie$Perc),
                        vjust = label.vjust,
                        hjust = label.hjust) +
            coord_polar(theta="y") +
            scale_x_discrete(labels = c("")) +
            scale_y_discrete(labels = c("")) +
            theme(plot.title = element_text(hjust = 0.5),
                  axis.title.x=element_blank(),
                  axis.title.y=element_blank()) +
            ggtitle("Attack types")

  #Returning graph and attack list
  list(graph1, unique(attack.pie$Attack))
}


#' Return graph to show the evolution of a attack types list
#'
#' @param Attacks data.frame with procesed source data
#' @param TypeList List with attack types to show
#'
#' @return list(graph, data.frame with TypeList attacks data by year)
#' @export
GetAttackTypeEvolution <- function(Attacks, TypeList){
  #Obtaining year from date
  Attacks.pre <- dplyr::mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
                group_by(Year, Attack.standar) #group by attack type
  #Count rows for each attack type and each year
  Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
  Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
  #Removing rows without an attack type specified
  Attacks.pre <- Attacks.pre[Attacks.pre$Attack %in% TypeList,]

  #Graph
  graph1 <- ggplot(data = Attacks.pre,
                   aes(x = Year,
                       y = Count,
                       color = Attack,
                       group = Attack)) +
            geom_point() +
            geom_line() +
            theme(plot.title = element_text(hjust = 0.5)) +
            ggtitle("Attack type evolution") +
            labs(colour = "Attack type") + xlab("Years") + ylab("Attacks")
  #Return graph and used data to separate representation
  list(graph1, Attacks.pre)

  }


#' Return graph to show the evolution of a single attack type and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param AttackType Attack type to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetAttackTypeSigleEvolution <- function(Attacks,
                                        AttackType,
                                        smooth.x = 0,
                                        smooth.y = 0,
                                        smooth.label.hjust = 0){
  #Filtering for the AttackType specified
  attacks.evol <- Attacks[Attacks$Attack == AttackType,]

  #Cal slope
  slope1 <- lm(formula = Count ~ as.numeric(Year), data = attacks.evol)$coef[[2]]
  #Graph
  graph1 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = Count, group = 1)) +
            geom_line() +
            geom_point() +
            theme(plot.title = element_text(hjust = 0.5)) +
            ggtitle(AttackType) +
            xlab("Years") + ylab("Attacks")+
            geom_smooth(method = "lm",
                        se = FALSE) +
            geom_label(aes(x = smooth.x, y = smooth.y,
                           label = paste("Slope =", signif(slope1, 5))),
                       color = "blue",
                       hjust = smooth.label.hjust)

  #Returning list(graph, slope)
  list(graph1, slope1)

}

#----------------------------------------------------------------
#-------------------------Geolocal evolution---------
#----------------------------------------------------------------

#' Return pie graph to show % of attacks and certifications for each continent
#'
#' @param Attacks data.frame with procesed source data of attacks
#' @param Attacks.label.vjust Vector of vertical just to each portion label
#' @param Attacks.label.hjust Vector of horizontal just to each portion label
#' @param Cert_PerCountry data.frame with procesed source data of certifications
#' @param Certs.label.vjust Vector of vertical just to each portion label
#' @param Certs.label.hjust Vector of horizontal just to each portion label
#'
#' @return list(AttacksGraph, CertsGraph, ContinentListToStudy)
#' @export
GetContinentPie <- function (Attacks,
                             Attacks.label.vjust = 0,
                             Attacks.label.hjust = 0,
                             Cert_PerCountry,
                             Certs.label.vjust = 0,
                             Certs.label.hjust = 0){

  #Group attacks by continent
  attack.pie <- group_by(Attacks, Continent)
  #Count attacks for each continent
  attack.pie <- as.data.frame(table(attack.pie$Continent))
  attack.pie <- setNames(attack.pie, c("Continent", "Count"))
  #Remove rows without Continent specified
  attack.pie <- attack.pie[attack.pie$Continent != "",]
  #Calc % of each continent
  attack.pie <- mutate(attack.pie, perc = round(100 * attack.pie$Count / sum(attack.pie$Count), 2))

  #Attacks graph
  graph1 <- ggplot(data=attack.pie,
                   aes(x=factor(1),
                       y=Count,
                       fill=Continent)) +
            geom_col(width = 1, color='black') +
            geom_label(aes(label=paste(attack.pie$perc, "%")),
                           vjust = Attacks.label.vjust,
                           hjust = Attacks.label.hjust) +
            coord_polar(theta="y") +
            scale_x_discrete(labels = c("")) +
            scale_y_discrete(labels = c("")) +
            theme(plot.title = element_text(hjust = 0.5),
                  axis.title.x=element_blank(),
                  axis.title.y=element_blank()) +
            ggtitle("Attacks")


  #Grouping certifications by continent
  cert.pie <- group_by(Cert_PerCountry, Continent)
  #Counting certificates for each continent
  cert.pie <- dplyr::summarise(cert.pie, Count = sum(X2011 + X2012 + X2013 + X2014 + X2015))
  #Remove rows without Continent specified
  cert.pie <- cert.pie[cert.pie$Continent != "",]
  #Calc % of each continent
  cert.pie <- mutate(cert.pie, perc = round(100 * cert.pie$Count / sum(cert.pie$Count), 2))

  #Certifications graph
  graph2 <- ggplot(data=cert.pie,
                   aes(x=factor(1),
                       y=Count,
                       fill=Continent)) +
            geom_col(width = 1, color='black') +
            geom_label(aes(label=paste(cert.pie$perc, "%")),
                           vjust = Certs.label.vjust,
                           hjust = Certs.label.hjust) +
            coord_polar(theta="y") +
            scale_x_discrete(labels = c("")) +
            scale_y_discrete(labels = c("")) +
            theme(plot.title = element_text(hjust = 0.5),
                  axis.title.x=element_blank(),
                  axis.title.y=element_blank()) +
            ggtitle("ISO 27001")

  #Return graphs and union of continent to study
  list(graph1, graph2,
       union(unique(attack.pie[attack.pie$perc > 5,]$Continent),
            unique(cert.pie[cert.pie$perc > 5,]$Continent)))
}


#' Return graph to show the evolution of a attack types list
#'
#' @param Attacks data.frame with procesed source data
#' @param ContinentList List with continents to show
#'
#' @return list(graph, data.frame with ContinentList attacks data by year)
#' @export
GetContinentAttacksEvolution <- function(Attacks,
                                         ContinentList){

  #Extract year from date
  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
                group_by(Continent, Year) #Grouping atacks by continent and year
  #Counting attacks for each continent and year
  attacks.evol <- as.data.frame(table(attacks.evol$Continent, attacks.evol$Year))
  colnames(attacks.evol) <- c("Continent", "Year","Attacks")
  #Filtering by the ContinentList especified
  attacks.evol <- attacks.evol[attacks.evol$Continent %in% ContinentList,]

  #Graph
  graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
                           x = attacks.evol$Year,
                           y = attacks.evol$Attacks,
                           group = Continent,
                           xlab = "Years",
                           ylab = "Attacks",
                           data = attacks.evol,
                           geom = "point",
                           color = Continent)  +
            geom_line() +
            theme(plot.title = element_text(hjust = 0.5))

  #Return graph and data to represent 1b1
  list(graph1, attacks.evol)

}

#' Return graph to show the evolution of certifications in a continent list
#'
#' @param Cert_PerCountry data.frame with procesed source data
#' @param ContinentList List with continents to show
#'
#' @return list(graph, data.frame with ContinentList certifications data by year)
#' @export
GetContinentCertsEvolution <- function(Cert_PerCountry,
                                       ContinentList){
  #Collapsing year columns to 1 column with year value
  certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>%
              group_by(Continent, Year) #Grouping by continent and year
  #Sum of certifications for echa continent and year
  certs.evol <- summarise(certs.evol, Certs = sum(Certs))
  #Removing the X from year values
  certs.evol$Year <- substr(certs.evol$Year,2,5)
  #Filtering for the specified continents
  certs.evol <- certs.evol[certs.evol$Continent %in% ContinentList,]

  #graph
  graph1 <- ggplot2::qplot(main = "ISO 27001 evolution",
                           x = certs.evol$Year,
                           y = certs.evol$Certs,
                           group = Continent,
                           xlab = "Years",
                           ylab = "Certifications",
                           data = certs.evol,
                           geom = "point",
                           color = Continent)  +
            geom_line() +
            theme(plot.title = element_text(hjust = 0.5))

  #Return the graph and data to represent continents 1b1
  list(graph1, certs.evol)

}
#' Return graph to show the evolution of attacks in a single continent and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param Continent Continent to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetContinentAttacksSigleEvolution <- function(Attacks,
                                            Continent,
                                            smooth.x = 0,
                                            smooth.y = 0,
                                            smooth.label.hjust = 0){

  #Filtering for the continent specified
  attacks.evol <- Attacks[Attacks$Continent == Continent,]

  #Calc slope
  slope1 <- lm(formula = Attacks ~ as.numeric(Year), data = attacks.evol)$coef[[2]]
  #Graph
  graph1 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = Attacks, group = 1)) +
            geom_line() +
            geom_point() +
            theme(plot.title = element_text(hjust = 0.5)) +
            ggtitle(Continent) +
            xlab("Years") + ylab("Attacks")+
            geom_smooth(method = "lm",
                        se = FALSE) +
            geom_label(aes(x = smooth.x, y = smooth.y,
                           label = paste("Slope =", signif(slope1, 5))),
                       color = "blue",
                       hjust = smooth.label.hjust)

  #Returning list(graph, slope)
  list(graph1, slope1)
}
#' Return graph to show the evolution of certifications in a single continent and his smooth
#'
#' @param Certs_byContinent data.frame with procesed source data
#' @param Continent Continent to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetContinentCertsSingleEvolution <- function(Certs_byContinent,
                                             Continent,
                                             smooth.x = 0,
                                             smooth.y = 0,
                                             smooth.label.hjust = 0){

  #Filtering for the continent specified
  certs.evol <- Certs_byContinent[Certs_byContinent$Continent == Continent,]

  #Calc slope
  slope1 <- lm(formula = Certs ~ as.numeric(Year), data = certs.evol)$coef[[2]]
  #Graph
  graph1 <- ggplot(data = certs.evol,
                   aes(x = Year, y = Certs, group = 1)) +
            geom_line() +
            geom_point() +
            theme(plot.title = element_text(hjust = 0.5)) +
            ggtitle(Continent) +
            xlab("Years") + ylab("Certifications")+
            geom_smooth(method = "lm",
                        se = FALSE) +
            geom_label(aes(x = smooth.x, y = smooth.y,
                           label = paste("Slope =", signif(slope1, 5))),
                       color = "blue",
                       hjust = smooth.label.hjust)

  #Returning list(graph, slope)
  list(graph1, slope1)
}

#' Return graph to show the attacks by country
#'
#' @param Attacks data.frame with procesed source data of attacks
#' @param Attacks.label.vjust Vector of vertical just to each portion label
#' @param Attacks.label.hjust Vector of horizontal just to each portion label
#' @param Cert_PerCountry data.frame with procesed source certifications
#' @param Certs.label.vjust Vector of vertical just to each portion label
#' @param Certs.label.hjust Vector of horizontal just to each portion label
#'
#' @return list(AttacksGraph, CertsGraph, CountryListToStudy)
GetCountriesCol <- function(Attacks,
                            Attacks.label.vjust = 0,
                            Attacks.label.hjust = 0,
                            Cert_PerCountry,
                            Certs.label.vjust = 0,
                            Certs.label.hjust = 0){

  #Group attacks by continent and country
  attacks.col <- group_by(Attacks, Continent, Country)
  #Count attacks for each country
  attacks.col <- as.data.frame(table(attacks.col$Continent, attacks.col$Country))
  attacks.col <- setNames(attacks.col, c("Continent", "Country", "Count"))
  #Remove rows without Continent/Country specified
  attacks.col <- attacks.col[attacks.col$Country != "",]
  attacks.col <- attacks.col[attacks.col$Country != "AU",] #Abnormal behaivour, corrupt??
  attacks.col <- attacks.col[attacks.col$Continent != "",]
  #Only the countries with more than 2% of total attacks
  attacks.col <- attacks.col[attacks.col$Count > (sum(attacks.col$Count) * 0.015), ]
  #Sort by attacks
  attacks.col <- arrange(attacks.col, desc(Count))

  #Attacks graph
  graph1 <- ggplot2::ggplot(aes(x = reorder(Country, Count),
                                y = Count),
                            data = attacks.col) +
            geom_col(aes(fill = Continent)) +
            geom_text(aes(label = attacks.col$Count),
                       vjust = Attacks.label.vjust,
                       hjust = Attacks.label.hjust,
                       size = 3) +
            theme(plot.title = element_text(hjust = 0.5)) +
            ggtitle("Attacks") +
            xlab("Country") + ylab("Attacks")

  #Grouping certifications by continent
  certs.col <- group_by(Cert_PerCountry, Continent, country_short)
  #Counting certificates for each continent
  certs.col <- dplyr::summarise(certs.col, Count = sum(X2011 + X2012 + X2013 + X2014 + X2015))
  #Remove rows without Continent specified
  certs.col <- certs.col[certs.col$Continent != "",]
  certs.col <- certs.col[certs.col$country_short != "",]
  #Only the countries with more than 2% of total certs
  certs.col <- certs.col[certs.col$Count > (sum(certs.col$Count) * 0.02), ]
  #Sort by certifications
  certs.col <- arrange(certs.col, desc(Count))


  #Certifications graph
  graph2 <- ggplot2::ggplot(aes(x = reorder(country_short, Count),
                                y = Count),
                            data = certs.col) +
            geom_col(aes(fill = Continent)) +
            geom_text(aes(label = certs.col$Count),
                       vjust = Certs.label.vjust,
                       hjust = Certs.label.hjust,
                       size = 3) +
            theme(plot.title = element_text(hjust = 0.5)) +
            ggtitle("ISO 27001") +
            xlab("Country") + ylab("Certifications")

  #Return graphs and union of countries to study
  list(graph1, graph2,
       union(unique(head(attacks.col$Country, 3)),
             unique(head(certs.col$country_short, 3))))

  }

#' Return graph to show the evolution of attacks in a single continent and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param Country Country to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetCountriesAttacksSingleEvolution <- function(Attacks,
                                               Country,
                                               smooth.x = 0,
                                               smooth.y = 0,
                                               smooth.label.hjust = 0){
  #Extract year from date
  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
                group_by(Year, Country) #Group by country
  #Count attacks for each year and country
  attacks.evol <- as.data.frame(table(attacks.evol$Year, attacks.evol$Country))
  attacks.evol <- setNames(attacks.evol, c("Year", "Country", "Count"))
  #Filter by the specified country
  attacks.evol <- attacks.evol[attacks.evol$Country == Country,]

  #Calc slope
  slope1 <- lm(formula = Count ~ as.numeric(Year), data = attacks.evol)$coef[[2]]
  #Graph
  graph1 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = Count, group = 1)) +
            geom_line() +
            geom_point() +
            theme(plot.title = element_text(hjust = 0.5)) +
            ggtitle(paste("Cyberattacks -", Country)) +
            xlab("Years") + ylab("Attacks")+
            geom_smooth(method = "lm",
                        se = FALSE) +
            geom_label(aes(x = smooth.x, y = smooth.y,
                           label = paste("Slope =", signif(slope1, 5))),
                       color = "blue",
                       hjust = smooth.label.hjust)

  #Return list(graph, slope)
  list(graph1, slope1)

}

#' Return graph to show the evolution of certifications in a single continent and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param Country Country to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetCountriesCertsSingleEvolution <- function(Cert_PerCountry,
                                          Country,
                                          smooth.x = 0,
                                          smooth.y = 0,
                                          smooth.label.hjust = 0){

  #Collapsing year columns to only one with the year value
  certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>%
    group_by(country_short, Year) #Group by country and year
  #sum certificates for each country and year
  certs.evol <- summarise(certs.evol,
                          Certs = sum(Certs))
  #Removing the X of the year values
  certs.evol$Year <- substr(certs.evol$Year,2,5)
  #Filter by the specified Country
  certs.evol <- certs.evol[certs.evol$country_short == Country,]

  #Calc slope
  slope1 <- lm(formula = Certs ~ as.numeric(Year), data = certs.evol)$coef[[2]]
  #Graph
  graph1 <- ggplot(data = certs.evol,
                   aes(x = Year, y = Certs, group = 1)) +
    geom_line() +
    geom_point() +
    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle(paste("ISO 27001 -", Country)) +
    xlab("Years") + ylab("Certifications")+
    geom_smooth(method = "lm",
                se = FALSE) +
    geom_label(aes(x = smooth.x, y = smooth.y,
                   label = paste("Slope =", signif(slope1, 5))),
               color = "blue",
               hjust = smooth.label.hjust)

  #Return graph and slope
  list(graph1, slope1)

}


#----------------------------------------------------------------
#-------------------------gelocal/type---------------------------
#----------------------------------------------------------------

#' Return graph representing % of attacks type by continent
#'
#' @param Attacks data.frame with procesed source data
#' @param Country Country to represent on the left side
#' @param Country2 Country to represent on the right side
#'
#' @return Graph
#' @export
GetContinentAttackCol <- function (Attacks,
                                   Country,
                                   Country2){

  #Grouping attacks by attack type and country
  attack.pie <- group_by(Attacks, Attack.standar, Country)
  #Counting attacks for each attack type and country
  attack.pie <- as.data.frame(table(attack.pie$Country, attack.pie$Attack.standar))
  attack.pie <- setNames(attack.pie, c("Country", "Attack", "Count"))
  #Remove rows withouth a country specified
  attack.pie <- attack.pie[attack.pie$Country != "",]
  #Remove rows withouth attack type specified
  attack.pie <- attack.pie[attack.pie$Attack != "",]
  #grouping non 'important' attack types in 'Otros'
  attack.pie$Attack <- as.character(attack.pie$Attack)
  attack.pie[attack.pie$Attack != "DDoS" &
               attack.pie$Attack != "Defacement" &
               attack.pie$Attack != "Injection",]$Attack <- "Otros"
  attack.pie$Attack <- as.factor(attack.pie$Attack)
  #Grouping atatcks by attacky type and country
  attack.pie <- group_by(attack.pie, Attack, Country)
  #sum attacks for each attack type and country
  attack.pie <- summarise(attack.pie, Count = sum(Count))

  #Filtering by the desired countries
  attack.pie.C1 <- attack.pie[attack.pie$Country == Country,]
  attack.pie.C2 <- attack.pie[attack.pie$Country == Country2,]

  #Calc % of each attack type
  attack.pie.C1$perc <- round(100 * attack.pie.C1$Count / sum(attack.pie.C1$Count), 2)
  attack.pie.C2$perc <- round(100 * attack.pie.C2$Count / sum(attack.pie.C2$Count), 2)

  #Calc max % to draw gray background
  attack.pie.max <- data.frame(Attack = attack.pie.C1$Attack)
  percs <- c()
  for (AT in attack.pie.max$Attack){
    percs <- c(percs, max(attack.pie.C1[attack.pie.C1$Attack == AT,]$perc,
                          attack.pie.C2[attack.pie.C2$Attack == AT,]$perc))
  }
  attack.pie.max$perc <- percs

  graph1 <- ggplot() +
    geom_col(aes(x=Attack,
                 y=perc),
             width = 1,
             data = attack.pie.max,
             color = "Black",
             fill = "Grey") +
    geom_col(aes(x=1.25:4.25,
                 y=perc,
                 fill = Country),
             width = 0.4,
             data = attack.pie.C1) +
    geom_text(aes(x=1.25:4.25,
                  y=perc + 1,
                  label = paste(perc, "%")),
              data = attack.pie.C1) +
    geom_col(aes(x=0.75:3.75,
                 y=perc,
                 fill = Country2),
             width = 0.4,
             data = attack.pie.C2) +
    geom_text(aes(x=0.75:3.75,
                  y=perc + 1,
                  label = paste(perc, "%")),
              data = attack.pie.C2) +
    scale_x_discrete("Attack", attack.pie.C1$Attack) +
    ylab("% of total attacks") +
    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle(paste(Country, Country2, sep = " - "))

  graph1
}


#' Return graph representing the evolution of attack types in a country
#'
#' @param Attacks data.frame with procesed source data
#' @param Country Country to represent
#'
#' @return list(Graph, data to represent attacktypes of the country 1b1)
GetContinentAttackEvolution <- function(Attacks, Country){

  #Extract Year from date
  attack.evol <-mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
              group_by(Attack.standar, Country, Year) #Group by attack type, country and year
  #Counting the attacks for each attack type, country and year
  attack.evol <- as.data.frame(table(attack.evol$Country, attack.evol$Attack.standar, attack.evol$Year))
  attack.evol <- setNames(attack.evol, c("Country", "Attack", "Year", "Count"))
  #Removing rows without country or attack type
  attack.evol <- attack.evol[attack.evol$Country != "",]
  attack.evol <- attack.evol[attack.evol$Attack != "",]
  #grouping non 'important' attack types in 'Otros'
  attack.evol$Attack <- as.character(attack.evol$Attack)
  attack.evol[attack.evol$Attack != "DDoS" &
               attack.evol$Attack != "Defacement" &
               attack.evol$Attack != "Injection",]$Attack <- "Otros"
  attack.evol$Attack <- as.factor(attack.evol$Attack)
  #Counting attacks of new tyoe
  attack.evol <- group_by(attack.evol, Attack, Country, Year)
  attack.evol <- summarise(attack.evol, Count = sum(Count))
  #Filtering by specified country
  attack.evol <- attack.evol[attack.evol$Country == Country,]

  #Graph
  graph1 <- ggplot2::qplot(main = Country,
                           x = attack.evol$Year,
                           y = attack.evol$Count,
                           group = attack.evol$Attack,
                           xlab = "Years",
                           ylab = "Attacks",
                           data = attack.evol,
                           geom = "point",
                           color = Attack)  +
            geom_line() +
            theme(plot.title = element_text(hjust = 0.5))

  #list with graph and processed data to represent 1b1
  list(graph1, attack.evol)

}