ReportGraphs.R
6.49 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#' Return every graph used in the report file
#'
#' @param Cert_PerCountry data.frame with the processed data of ISO 27001 certifications
#' @param Attacks data.frame with the processed data of cyberattacks
#'
#' @return data.frame
#' @export
GetReportGraphs <- function(Cert_PerCountry,Attacks) {
#2012
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with ISO 27001 (2012)",
x = reorder(country_short,X2012),
y = X2012,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),])
attacks2k12 <- Attacks[Attacks$Date < "2013-01-01" & Attacks$Date >= "2012-01-01",]
frameAttacks2k12 <- as.data.frame(table(attacks2k12$Country))
colnames(frameAttacks2k12) <- c("Country","Attacks")
graph2 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2012)",
x = reorder(Country,Attacks),
y = Attacks,
xlab = "Country",
ylab = "Number of attacks",
data = frameAttacks2k12[frameAttacks2k12$Attacks > mean(frameAttacks2k12$Attacks),])
Attacks2012ByMonth <- mutate(attacks2k12, month = format(attacks2k12$Date, "%m")) %>% group_by(month)
Attack2012FreqByMonth <- as.data.frame(table(Attacks2012ByMonth$month))
colnames(Attack2012FreqByMonth) <- c("Month", "Attacks")
graph3 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
main = "Global cyberattack progression by month (2012)",
data = Attack2012FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
#2013
graph4 <- ggplot2::qplot(main = "Countries with above average number of companies certified with ISO 27001 (2013)",
x = reorder(country_short,X2013),
y = X2013,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2013 > mean(Cert_PerCountry$X2013),])
attacks2k13 <- Attacks[Attacks$Date < "2014-01-01" & Attacks$Date >= "2013-01-01",]
frameAttacks2k13 <- as.data.frame(table(attacks2k13$Country))
colnames(frameAttacks2k13) <- c("Country","Attacks")
graph5 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2013)",
x = reorder(Country,Attacks),
y = Attacks,
xlab = "Country",
ylab = "Number of attacks",
data = frameAttacks2k13[frameAttacks2k13$Attacks > mean(frameAttacks2k13$Attacks),])
Attacks2013ByMonth <- mutate(attacks2k13, month = format(attacks2k13$Date, "%m")) %>% group_by(month)
Attack2013FreqByMonth <- as.data.frame(table(Attacks2013ByMonth$month))
colnames(Attack2013FreqByMonth) <- c("Month", "Attacks")
graph6 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
main = "Global cyberattack progression by month (2013)",
data = Attack2013FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
#2014
graph7 <- ggplot2::qplot(main = "Countries with above average number of companies certified with ISO 27001 (2014)",
x = reorder(country_short,X2014),
y = X2014,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2014 > mean(Cert_PerCountry$X2014),])
attacks2k14 <- Attacks[Attacks$Date < "2015-01-01" & Attacks$Date >= "2014-01-01",]
frameAttacks2k14 <- as.data.frame(table(attacks2k14$Country))
colnames(frameAttacks2k14) <- c("Country","Attacks")
graph8 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2014)",
x = reorder(Country,Attacks),
y = Attacks,
xlab = "Country",
ylab = "Number of attacks",
data = frameAttacks2k14[frameAttacks2k14$Attacks > mean(frameAttacks2k14$Attacks),])
Attacks2014ByMonth <- mutate(attacks2k14, month = format(attacks2k14$Date, "%m")) %>% group_by(month)
Attack2014FreqByMonth <- as.data.frame(table(Attacks2014ByMonth$month))
colnames(Attack2014FreqByMonth) <- c("Month", "Attacks")
graph9 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
main = "Global cyberattack progression by month (2014)",
data = Attack2014FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
#2015
graph10 <- ggplot2::qplot(main = "Countries with above average number of companies certified with ISO 27001 (2015)",
x = reorder(country_short,X2015),
y = X2015,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2015 > mean(Cert_PerCountry$X2015),])
attacks2k15 <- Attacks[Attacks$Date < "2016-01-01" & Attacks$Date >= "2015-01-01",]
frameAttacks2k15 <- as.data.frame(table(attacks2k15$Country))
colnames(frameAttacks2k15) <- c("Country","Attacks")
graph11 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2015)",
x = reorder(Country,Attacks),
y = Attacks,
xlab = "Country",
ylab = "Number of attacks",
data = frameAttacks2k15[frameAttacks2k15$Attacks > mean(frameAttacks2k15$Attacks),])
Attacks2015ByMonth <- mutate(attacks2k15, month = format(attacks2k15$Date, "%m")) %>% group_by(month)
Attack2015FreqByMonth <- as.data.frame(table(Attacks2015ByMonth$month))
colnames(Attack2015FreqByMonth) <- c("Month", "Attacks")
graph12 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
main = "Global cyberattack progression by month (2015)",
data = Attack2015FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
list(graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9,graph10,graph11,graph12)
}