ReportGraphs.R
8.48 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
GetBaseCertsGraph <- function(Cert_PerCountry, year){
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
x = reorder(country_short,X2012),
y = X2012,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
geom = "col",
fill = Continent)
graph1
}
GetAttacksEvolution <- function(Attacks){
attacks.range <- Attacks[Attacks$Date < "2016-01-01" & Attacks$Date >= "2012-01-01",]
attacks.range$Year <- as.numeric(format(attacks.range$Date, "%Y"))
attacks.range <- mutate(attacks.range, Year = format(attacks.range$Date, "%Y")) %>% group_by(Year)
attacks.range <- as.data.frame(table(attacks.range$Year))
colnames(attacks.range) <- c("Year","Attacks")
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
x = attacks.range$Year,
y = attacks.range$Attacks,
group = 1,
xlab = "Years",
ylab = "Number of attacks",
data = attacks.range,
geom = "line") + geom_point() + geom_smooth( method = lm, se = FALSE)
graph1
}
#' Return every graph used in the report file
#'
#' @param Cert_PerCountry data.frame with the processed data of ISO 27001 certifications
#' @param Attacks data.frame with the processed data of cyberattacks
#'
#' @return data.frame
#' @export
GetReportGraphs <- function(Cert_PerCountry,Attacks) {
#2012
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
x = reorder(country_short,X2012),
y = X2012,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
geom = "col",
fill = Continent)
attacks2k12 <- Attacks[Attacks$Date < "2013-01-01" & Attacks$Date >= "2012-01-01",]
frameAttacks2k12 <- as.data.frame(table(attacks2k12$Country))
colnames(frameAttacks2k12) <- c("Country","Attacks")
graph2 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2012)",
x = reorder(Country,Attacks),
y = Attacks,
xlab = "Country",
ylab = "Number of attacks",
data = frameAttacks2k12[frameAttacks2k12$Attacks > mean(frameAttacks2k12$Attacks),],
geom = "col",
fill = Continent)
Attacks2012ByMonth <- mutate(attacks2k12, month = format(attacks2k12$Date, "%m")) %>% group_by(month)
Attack2012FreqByMonth <- as.data.frame(table(Attacks2012ByMonth$month))
colnames(Attack2012FreqByMonth) <- c("Month", "Attacks")
graph3 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
main = "Global cyberattack progression by month (2012)",
data = Attack2012FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
#2013
graph4 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2013)",
x = reorder(country_short,X2013),
y = X2013,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2013 > mean(Cert_PerCountry$X2013),]
, geom = "col",
fill = Continent)
attacks2k13 <- Attacks[Attacks$Date < "2014-01-01" & Attacks$Date >= "2013-01-01",]
frameAttacks2k13 <- as.data.frame(table(attacks2k13$Country))
colnames(frameAttacks2k13) <- c("Country","Attacks")
graph5 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2013)",
x = reorder(Country,Attacks),
y = Attacks,
xlab = "Country",
ylab = "Number of attacks",
data = frameAttacks2k13[frameAttacks2k13$Attacks > mean(frameAttacks2k13$Attacks),]
, geom = "col",
fill = Continent)
Attacks2013ByMonth <- mutate(attacks2k13, month = format(attacks2k13$Date, "%m")) %>% group_by(month)
Attack2013FreqByMonth <- as.data.frame(table(Attacks2013ByMonth$month))
colnames(Attack2013FreqByMonth) <- c("Month", "Attacks")
graph6 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
main = "Global cyberattack progression by month (2013)",
data = Attack2013FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
#2014
graph7 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2014)",
x = reorder(country_short,X2014),
y = X2014,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2014 > mean(Cert_PerCountry$X2014),]
, geom = "col",
fill = Continent)
attacks2k14 <- Attacks[Attacks$Date < "2015-01-01" & Attacks$Date >= "2014-01-01",]
frameAttacks2k14 <- as.data.frame(table(attacks2k14$Country))
colnames(frameAttacks2k14) <- c("Country","Attacks")
graph8 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2014)",
x = reorder(Country,Attacks),
y = Attacks,
xlab = "Country",
ylab = "Number of attacks",
data = frameAttacks2k14[frameAttacks2k14$Attacks > mean(frameAttacks2k14$Attacks),]
, geom = "col",
fill = Continent)
Attacks2014ByMonth <- mutate(attacks2k14, month = format(attacks2k14$Date, "%m")) %>% group_by(month)
Attack2014FreqByMonth <- as.data.frame(table(Attacks2014ByMonth$month))
colnames(Attack2014FreqByMonth) <- c("Month", "Attacks")
graph9 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
main = "Global cyberattack progression by month (2014)",
data = Attack2014FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
#2015
graph10 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2015)",
x = reorder(country_short,X2015),
y = X2015,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2015 > mean(Cert_PerCountry$X2015),]
, geom = "col",
fill = Continent)
attacks2k15 <- Attacks[Attacks$Date < "2016-01-01" & Attacks$Date >= "2015-01-01",]
frameAttacks2k15 <- as.data.frame(table(attacks2k15$Country))
colnames(frameAttacks2k15) <- c("Country","Attacks")
graph11 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2015)",
x = reorder(Country,Attacks),
y = Attacks,
xlab = "Country",
ylab = "Number of attacks",
data = frameAttacks2k15[frameAttacks2k15$Attacks > mean(frameAttacks2k15$Attacks),]
, geom = "col",
fill = Continent)
Attacks2015ByMonth <- mutate(attacks2k15, month = format(attacks2k15$Date, "%m")) %>% group_by(month)
Attack2015FreqByMonth <- as.data.frame(table(Attacks2015ByMonth$month))
colnames(Attack2015FreqByMonth) <- c("Month", "Attacks")
graph12 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
main = "Global cyberattack progression by month (2015)",
data = Attack2015FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
list(graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9,graph10,graph11,graph12)
}