/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011,2012 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . --- A special exception to the GPL can be applied should you wish to distribute a combined work that includes ChibiOS/RT, without being obliged to provide the source code for any proprietary components. See the file exception.txt for full details of how and when the exception can be applied. */ /** * @file STM32/gpt_lld.c * @brief STM32 GPT subsystem low level driver source. * * @addtogroup GPT * @{ */ #include "ch.h" #include "hal.h" #if HAL_USE_GPT || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** * @brief GPTD1 driver identifier. * @note The driver GPTD1 allocates the complex timer TIM1 when enabled. */ #if STM32_GPT_USE_TIM1 || defined(__DOXYGEN__) GPTDriver GPTD1; #endif /** * @brief GPTD2 driver identifier. * @note The driver GPTD2 allocates the timer TIM2 when enabled. */ #if STM32_GPT_USE_TIM2 || defined(__DOXYGEN__) GPTDriver GPTD2; #endif /** * @brief GPTD3 driver identifier. * @note The driver GPTD3 allocates the timer TIM3 when enabled. */ #if STM32_GPT_USE_TIM3 || defined(__DOXYGEN__) GPTDriver GPTD3; #endif /** * @brief GPTD4 driver identifier. * @note The driver GPTD4 allocates the timer TIM4 when enabled. */ #if STM32_GPT_USE_TIM4 || defined(__DOXYGEN__) GPTDriver GPTD4; #endif /** * @brief GPTD5 driver identifier. * @note The driver GPTD5 allocates the timer TIM5 when enabled. */ #if STM32_GPT_USE_TIM5 || defined(__DOXYGEN__) GPTDriver GPTD5; #endif /** * @brief GPTD8 driver identifier. * @note The driver GPTD8 allocates the timer TIM8 when enabled. */ #if STM32_GPT_USE_TIM8 || defined(__DOXYGEN__) GPTDriver GPTD8; #endif /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Shared IRQ handler. * * @param[in] gptp pointer to a @p GPTDriver object */ static void gpt_lld_serve_interrupt(GPTDriver *gptp) { gptp->tim->SR = 0; if (gptp->state == GPT_ONESHOT) { gptp->state = GPT_READY; /* Back in GPT_READY state. */ gpt_lld_stop_timer(gptp); /* Timer automatically stopped. */ } gptp->config->callback(gptp); } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ #if STM32_GPT_USE_TIM1 /** * @brief TIM2 interrupt handler. * * @isr */ CH_IRQ_HANDLER(TIM1_UP_IRQHandler) { CH_IRQ_PROLOGUE(); gpt_lld_serve_interrupt(&GPTD1); CH_IRQ_EPILOGUE(); } #endif /* STM32_GPT_USE_TIM1 */ #if STM32_GPT_USE_TIM2 /** * @brief TIM2 interrupt handler. * * @isr */ CH_IRQ_HANDLER(TIM2_IRQHandler) { CH_IRQ_PROLOGUE(); gpt_lld_serve_interrupt(&GPTD2); CH_IRQ_EPILOGUE(); } #endif /* STM32_GPT_USE_TIM2 */ #if STM32_GPT_USE_TIM3 /** * @brief TIM3 interrupt handler. * * @isr */ CH_IRQ_HANDLER(TIM3_IRQHandler) { CH_IRQ_PROLOGUE(); gpt_lld_serve_interrupt(&GPTD3); CH_IRQ_EPILOGUE(); } #endif /* STM32_GPT_USE_TIM3 */ #if STM32_GPT_USE_TIM4 /** * @brief TIM4 interrupt handler. * * @isr */ CH_IRQ_HANDLER(TIM4_IRQHandler) { CH_IRQ_PROLOGUE(); gpt_lld_serve_interrupt(&GPTD4); CH_IRQ_EPILOGUE(); } #endif /* STM32_GPT_USE_TIM4 */ #if STM32_GPT_USE_TIM5 /** * @brief TIM5 interrupt handler. * * @isr */ CH_IRQ_HANDLER(TIM5_IRQHandler) { CH_IRQ_PROLOGUE(); gpt_lld_serve_interrupt(&GPTD5); CH_IRQ_EPILOGUE(); } #endif /* STM32_GPT_USE_TIM5 */ #if STM32_GPT_USE_TIM8 /** * @brief TIM8 interrupt handler. * * @isr */ CH_IRQ_HANDLER(TIM8_UP_IRQHandler) { CH_IRQ_PROLOGUE(); gpt_lld_serve_interrupt(&GPTD8); CH_IRQ_EPILOGUE(); } #endif /* STM32_GPT_USE_TIM8 */ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level GPT driver initialization. * * @notapi */ void gpt_lld_init(void) { #if STM32_GPT_USE_TIM1 /* Driver initialization.*/ GPTD1.tim = STM32_TIM1; gptObjectInit(&GPTD1); #endif #if STM32_GPT_USE_TIM2 /* Driver initialization.*/ GPTD2.tim = STM32_TIM2; gptObjectInit(&GPTD2); #endif #if STM32_GPT_USE_TIM3 /* Driver initialization.*/ GPTD3.tim = STM32_TIM3; gptObjectInit(&GPTD3); #endif #if STM32_GPT_USE_TIM4 /* Driver initialization.*/ GPTD4.tim = STM32_TIM4; gptObjectInit(&GPTD4); #endif #if STM32_GPT_USE_TIM5 /* Driver initialization.*/ GPTD5.tim = STM32_TIM5; gptObjectInit(&GPTD5); #endif #if STM32_GPT_USE_TIM8 /* Driver initialization.*/ GPTD8.tim = STM32_TIM8; gptObjectInit(&GPTD8); #endif } /** * @brief Configures and activates the GPT peripheral. * * @param[in] gptp pointer to the @p GPTDriver object * * @notapi */ void gpt_lld_start(GPTDriver *gptp) { uint16_t psc; if (gptp->state == GPT_STOP) { /* Clock activation.*/ #if STM32_GPT_USE_TIM1 if (&GPTD1 == gptp) { rccEnableTIM1(FALSE); rccResetTIM1(); nvicEnableVector(TIM1_UP_IRQn, CORTEX_PRIORITY_MASK(STM32_GPT_TIM1_IRQ_PRIORITY)); gptp->clock = STM32_TIMCLK2; } #endif #if STM32_GPT_USE_TIM2 if (&GPTD2 == gptp) { rccEnableTIM2(FALSE); rccResetTIM2(); nvicEnableVector(TIM2_IRQn, CORTEX_PRIORITY_MASK(STM32_GPT_TIM2_IRQ_PRIORITY)); gptp->clock = STM32_TIMCLK1; } #endif #if STM32_GPT_USE_TIM3 if (&GPTD3 == gptp) { rccEnableTIM3(FALSE); rccResetTIM3(); nvicEnableVector(TIM3_IRQn, CORTEX_PRIORITY_MASK(STM32_GPT_TIM3_IRQ_PRIORITY)); gptp->clock = STM32_TIMCLK1; } #endif #if STM32_GPT_USE_TIM4 if (&GPTD4 == gptp) { rccEnableTIM4(FALSE); rccResetTIM4(); nvicEnableVector(TIM4_IRQn, CORTEX_PRIORITY_MASK(STM32_GPT_TIM4_IRQ_PRIORITY)); gptp->clock = STM32_TIMCLK1; } #endif #if STM32_GPT_USE_TIM5 if (&GPTD5 == gptp) { rccEnableTIM5(FALSE); rccResetTIM5(); nvicEnableVector(TIM5_IRQn, CORTEX_PRIORITY_MASK(STM32_GPT_TIM5_IRQ_PRIORITY)); gptp->clock = STM32_TIMCLK1; } #endif #if STM32_GPT_USE_TIM8 if (&GPTD8 == gptp) { rccEnableTIM8(FALSE); rccResetTIM8(); nvicEnableVector(TIM8_UP_IRQn, CORTEX_PRIORITY_MASK(STM32_GPT_TIM8_IRQ_PRIORITY)); gptp->clock = STM32_TIMCLK2; } #endif } /* Prescaler value calculation.*/ psc = (uint16_t)((gptp->clock / gptp->config->frequency) - 1); chDbgAssert(((uint32_t)(psc + 1) * gptp->config->frequency) == gptp->clock, "gpt_lld_start(), #1", "invalid frequency"); /* Timer configuration.*/ gptp->tim->CR1 = 0; /* Initially stopped. */ gptp->tim->CR2 = TIM_CR2_CCDS; /* DMA on UE (if any). */ gptp->tim->PSC = psc; /* Prescaler value. */ gptp->tim->DIER = 0; } /** * @brief Deactivates the GPT peripheral. * * @param[in] gptp pointer to the @p GPTDriver object * * @notapi */ void gpt_lld_stop(GPTDriver *gptp) { if (gptp->state == GPT_READY) { gptp->tim->CR1 = 0; /* Timer disabled. */ gptp->tim->DIER = 0; /* All IRQs disabled. */ gptp->tim->SR = 0; /* Clear eventual pending IRQs. */ #if STM32_GPT_USE_TIM1 if (&GPTD1 == gptp) { nvicDisableVector(TIM1_UP_IRQn); rccDisableTIM1(FALSE); } #endif #if STM32_GPT_USE_TIM2 if (&GPTD2 == gptp) { nvicDisableVector(TIM2_IRQn); rccDisableTIM2(FALSE); } #endif #if STM32_GPT_USE_TIM3 if (&GPTD3 == gptp) { nvicDisableVector(TIM3_IRQn); rccDisableTIM3(FALSE); } #endif #if STM32_GPT_USE_TIM4 if (&GPTD4 == gptp) { nvicDisableVector(TIM4_IRQn); rccDisableTIM4(FALSE); } #endif #if STM32_GPT_USE_TIM5 if (&GPTD5 == gptp) { nvicDisableVector(TIM5_IRQn); rccDisableTIM5(FALSE); } #endif #if STM32_GPT_USE_TIM8 if (&GPTD8 == gptp) { nvicDisableVector(TIM8_UP_IRQn); rccDisableTIM8(FALSE); } #endif } } /** * @brief Starts the timer in continuous mode. * * @param[in] gptp pointer to the @p GPTDriver object * @param[in] interval period in ticks * * @notapi */ void gpt_lld_start_timer(GPTDriver *gptp, gptcnt_t interval) { gptp->tim->ARR = interval - 1; /* Time constant. */ gptp->tim->EGR = TIM_EGR_UG; /* Update event. */ gptp->tim->CNT = 0; /* Reset counter. */ /* NOTE: After generating the UG event it takes several clock cycles before SR bit 0 goes to 1. This is because the clearing of CNT has been inserted before the clearing of SR, to give it some time.*/ gptp->tim->SR = 0; /* Clear pending IRQs (if any). */ gptp->tim->DIER = TIM_DIER_UIE; /* Update Event IRQ enabled. */ gptp->tim->CR1 = TIM_CR1_URS | TIM_CR1_CEN; } /** * @brief Stops the timer. * * @param[in] gptp pointer to the @p GPTDriver object * * @notapi */ void gpt_lld_stop_timer(GPTDriver *gptp) { gptp->tim->CR1 = 0; /* Initially stopped. */ gptp->tim->SR = 0; /* Clear pending IRQs (if any). */ gptp->tim->DIER = 0; /* Interrupts disabled. */ } /** * @brief Starts the timer in one shot mode and waits for completion. * @details This function specifically polls the timer waiting for completion * in order to not have extra delays caused by interrupt servicing, * this function is only recommended for short delays. * * @param[in] gptp pointer to the @p GPTDriver object * @param[in] interval time interval in ticks * * @notapi */ void gpt_lld_polled_delay(GPTDriver *gptp, gptcnt_t interval) { gptp->tim->ARR = interval - 1; /* Time constant. */ gptp->tim->EGR = TIM_EGR_UG; /* Update event. */ gptp->tim->SR = 0; /* Clear pending IRQs (if any). */ gptp->tim->CR1 = TIM_CR1_OPM | TIM_CR1_URS | TIM_CR1_CEN; while (!(gptp->tim->SR & TIM_SR_UIF)) ; } #endif /* HAL_USE_GPT */ /** @} */