stm32f10x_can.c 44 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/**
  ******************************************************************************
  * @file    stm32f10x_can.c
  * @author  MCD Application Team
  * @version V3.5.0
  * @date    11-March-2011
  * @brief   This file provides all the CAN firmware functions.
  ******************************************************************************
  * @attention
  *
  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
  *
  * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_can.h"
#include "stm32f10x_rcc.h"

/** @addtogroup STM32F10x_StdPeriph_Driver
  * @{
  */

/** @defgroup CAN 
  * @brief CAN driver modules
  * @{
  */ 

/** @defgroup CAN_Private_TypesDefinitions
  * @{
  */

/**
  * @}
  */

/** @defgroup CAN_Private_Defines
  * @{
  */

/* CAN Master Control Register bits */

#define MCR_DBF      ((uint32_t)0x00010000) /* software master reset */

/* CAN Mailbox Transmit Request */
#define TMIDxR_TXRQ  ((uint32_t)0x00000001) /* Transmit mailbox request */

/* CAN Filter Master Register bits */
#define FMR_FINIT    ((uint32_t)0x00000001) /* Filter init mode */

/* Time out for INAK bit */
#define INAK_TIMEOUT        ((uint32_t)0x0000FFFF)
/* Time out for SLAK bit */
#define SLAK_TIMEOUT        ((uint32_t)0x0000FFFF)



/* Flags in TSR register */
#define CAN_FLAGS_TSR              ((uint32_t)0x08000000) 
/* Flags in RF1R register */
#define CAN_FLAGS_RF1R             ((uint32_t)0x04000000) 
/* Flags in RF0R register */
#define CAN_FLAGS_RF0R             ((uint32_t)0x02000000) 
/* Flags in MSR register */
#define CAN_FLAGS_MSR              ((uint32_t)0x01000000) 
/* Flags in ESR register */
#define CAN_FLAGS_ESR              ((uint32_t)0x00F00000) 

/* Mailboxes definition */
#define CAN_TXMAILBOX_0                   ((uint8_t)0x00)
#define CAN_TXMAILBOX_1                   ((uint8_t)0x01)
#define CAN_TXMAILBOX_2                   ((uint8_t)0x02) 



#define CAN_MODE_MASK              ((uint32_t) 0x00000003)
/**
  * @}
  */

/** @defgroup CAN_Private_Macros
  * @{
  */

/**
  * @}
  */

/** @defgroup CAN_Private_Variables
  * @{
  */

/**
  * @}
  */

/** @defgroup CAN_Private_FunctionPrototypes
  * @{
  */

static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);

/**
  * @}
  */

/** @defgroup CAN_Private_Functions
  * @{
  */

/**
  * @brief  Deinitializes the CAN peripheral registers to their default reset values.
  * @param  CANx: where x can be 1 or 2 to select the CAN peripheral.
  * @retval None.
  */
void CAN_DeInit(CAN_TypeDef* CANx)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
 
  if (CANx == CAN1)
  {
    /* Enable CAN1 reset state */
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
    /* Release CAN1 from reset state */
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
  }
  else
  {  
    /* Enable CAN2 reset state */
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, ENABLE);
    /* Release CAN2 from reset state */
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, DISABLE);
  }
}

/**
  * @brief  Initializes the CAN peripheral according to the specified
  *         parameters in the CAN_InitStruct.
  * @param  CANx:           where x can be 1 or 2 to to select the CAN 
  *                         peripheral.
  * @param  CAN_InitStruct: pointer to a CAN_InitTypeDef structure that
  *                         contains the configuration information for the 
  *                         CAN peripheral.
  * @retval Constant indicates initialization succeed which will be 
  *         CAN_InitStatus_Failed or CAN_InitStatus_Success.
  */
uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct)
{
  uint8_t InitStatus = CAN_InitStatus_Failed;
  uint32_t wait_ack = 0x00000000;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
  assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
  assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
  assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
  assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
  assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
  assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));

  /* Exit from sleep mode */
  CANx->MCR &= (~(uint32_t)CAN_MCR_SLEEP);

  /* Request initialisation */
  CANx->MCR |= CAN_MCR_INRQ ;

  /* Wait the acknowledge */
  while (((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
  {
    wait_ack++;
  }

  /* Check acknowledge */
  if ((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
  {
    InitStatus = CAN_InitStatus_Failed;
  }
  else 
  {
    /* Set the time triggered communication mode */
    if (CAN_InitStruct->CAN_TTCM == ENABLE)
    {
      CANx->MCR |= CAN_MCR_TTCM;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_TTCM;
    }

    /* Set the automatic bus-off management */
    if (CAN_InitStruct->CAN_ABOM == ENABLE)
    {
      CANx->MCR |= CAN_MCR_ABOM;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_ABOM;
    }

    /* Set the automatic wake-up mode */
    if (CAN_InitStruct->CAN_AWUM == ENABLE)
    {
      CANx->MCR |= CAN_MCR_AWUM;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_AWUM;
    }

    /* Set the no automatic retransmission */
    if (CAN_InitStruct->CAN_NART == ENABLE)
    {
      CANx->MCR |= CAN_MCR_NART;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_NART;
    }

    /* Set the receive FIFO locked mode */
    if (CAN_InitStruct->CAN_RFLM == ENABLE)
    {
      CANx->MCR |= CAN_MCR_RFLM;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_RFLM;
    }

    /* Set the transmit FIFO priority */
    if (CAN_InitStruct->CAN_TXFP == ENABLE)
    {
      CANx->MCR |= CAN_MCR_TXFP;
    }
    else
    {
      CANx->MCR &= ~(uint32_t)CAN_MCR_TXFP;
    }

    /* Set the bit timing register */
    CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | \
                ((uint32_t)CAN_InitStruct->CAN_SJW << 24) | \
                ((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | \
                ((uint32_t)CAN_InitStruct->CAN_BS2 << 20) | \
               ((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);

    /* Request leave initialisation */
    CANx->MCR &= ~(uint32_t)CAN_MCR_INRQ;

   /* Wait the acknowledge */
   wait_ack = 0;

   while (((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
   {
     wait_ack++;
   }

    /* ...and check acknowledged */
    if ((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
    {
      InitStatus = CAN_InitStatus_Failed;
    }
    else
    {
      InitStatus = CAN_InitStatus_Success ;
    }
  }

  /* At this step, return the status of initialization */
  return InitStatus;
}

/**
  * @brief  Initializes the CAN peripheral according to the specified
  *         parameters in the CAN_FilterInitStruct.
  * @param  CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef
  *                               structure that contains the configuration 
  *                               information.
  * @retval None.
  */
void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
{
  uint32_t filter_number_bit_pos = 0;
  /* Check the parameters */
  assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
  assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
  assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
  assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
  assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));

  filter_number_bit_pos = ((uint32_t)1) << CAN_FilterInitStruct->CAN_FilterNumber;

  /* Initialisation mode for the filter */
  CAN1->FMR |= FMR_FINIT;

  /* Filter Deactivation */
  CAN1->FA1R &= ~(uint32_t)filter_number_bit_pos;

  /* Filter Scale */
  if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
  {
    /* 16-bit scale for the filter */
    CAN1->FS1R &= ~(uint32_t)filter_number_bit_pos;

    /* First 16-bit identifier and First 16-bit mask */
    /* Or First 16-bit identifier and Second 16-bit identifier */
    CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 = 
    ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
        (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);

    /* Second 16-bit identifier and Second 16-bit mask */
    /* Or Third 16-bit identifier and Fourth 16-bit identifier */
    CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 = 
    ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
        (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
  }

  if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
  {
    /* 32-bit scale for the filter */
    CAN1->FS1R |= filter_number_bit_pos;
    /* 32-bit identifier or First 32-bit identifier */
    CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 = 
    ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
        (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
    /* 32-bit mask or Second 32-bit identifier */
    CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 = 
    ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
        (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
  }

  /* Filter Mode */
  if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
  {
    /*Id/Mask mode for the filter*/
    CAN1->FM1R &= ~(uint32_t)filter_number_bit_pos;
  }
  else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
  {
    /*Identifier list mode for the filter*/
    CAN1->FM1R |= (uint32_t)filter_number_bit_pos;
  }

  /* Filter FIFO assignment */
  if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO0)
  {
    /* FIFO 0 assignation for the filter */
    CAN1->FFA1R &= ~(uint32_t)filter_number_bit_pos;
  }

  if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO1)
  {
    /* FIFO 1 assignation for the filter */
    CAN1->FFA1R |= (uint32_t)filter_number_bit_pos;
  }
  
  /* Filter activation */
  if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
  {
    CAN1->FA1R |= filter_number_bit_pos;
  }

  /* Leave the initialisation mode for the filter */
  CAN1->FMR &= ~FMR_FINIT;
}

/**
  * @brief  Fills each CAN_InitStruct member with its default value.
  * @param  CAN_InitStruct: pointer to a CAN_InitTypeDef structure which
  *                         will be initialized.
  * @retval None.
  */
void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
{
  /* Reset CAN init structure parameters values */
  
  /* Initialize the time triggered communication mode */
  CAN_InitStruct->CAN_TTCM = DISABLE;
  
  /* Initialize the automatic bus-off management */
  CAN_InitStruct->CAN_ABOM = DISABLE;
  
  /* Initialize the automatic wake-up mode */
  CAN_InitStruct->CAN_AWUM = DISABLE;
  
  /* Initialize the no automatic retransmission */
  CAN_InitStruct->CAN_NART = DISABLE;
  
  /* Initialize the receive FIFO locked mode */
  CAN_InitStruct->CAN_RFLM = DISABLE;
  
  /* Initialize the transmit FIFO priority */
  CAN_InitStruct->CAN_TXFP = DISABLE;
  
  /* Initialize the CAN_Mode member */
  CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
  
  /* Initialize the CAN_SJW member */
  CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
  
  /* Initialize the CAN_BS1 member */
  CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
  
  /* Initialize the CAN_BS2 member */
  CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
  
  /* Initialize the CAN_Prescaler member */
  CAN_InitStruct->CAN_Prescaler = 1;
}

/**
  * @brief  Select the start bank filter for slave CAN.
  * @note   This function applies only to STM32 Connectivity line devices.
  * @param  CAN_BankNumber: Select the start slave bank filter from 1..27.
  * @retval None.
  */
void CAN_SlaveStartBank(uint8_t CAN_BankNumber) 
{
  /* Check the parameters */
  assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber));
  
  /* Enter Initialisation mode for the filter */
  CAN1->FMR |= FMR_FINIT;
  
  /* Select the start slave bank */
  CAN1->FMR &= (uint32_t)0xFFFFC0F1 ;
  CAN1->FMR |= (uint32_t)(CAN_BankNumber)<<8;
  
  /* Leave Initialisation mode for the filter */
  CAN1->FMR &= ~FMR_FINIT;
}

/**
  * @brief  Enables or disables the DBG Freeze for CAN.
  * @param  CANx:     where x can be 1 or 2 to to select the CAN peripheral.
  * @param  NewState: new state of the CAN peripheral. This parameter can 
  *                   be: ENABLE or DISABLE.
  * @retval None.
  */
void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable Debug Freeze  */
    CANx->MCR |= MCR_DBF;
  }
  else
  {
    /* Disable Debug Freeze */
    CANx->MCR &= ~MCR_DBF;
  }
}


/**
  * @brief  Enables or disabes the CAN Time TriggerOperation communication mode.
  * @param  CANx:      where x can be 1 or 2 to to select the CAN peripheral.
  * @param  NewState : Mode new state , can be one of @ref FunctionalState.
  * @note   when enabled, Time stamp (TIME[15:0]) value is sent in the last 
  *         two data bytes of the 8-byte message: TIME[7:0] in data byte 6 
  *         and TIME[15:8] in data byte 7 
  * @note   DLC must be programmed as 8 in order Time Stamp (2 bytes) to be 
  *         sent over the CAN bus.  
  * @retval None
  */
void CAN_TTComModeCmd(CAN_TypeDef* CANx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the TTCM mode */
    CANx->MCR |= CAN_MCR_TTCM;

    /* Set TGT bits */
    CANx->sTxMailBox[0].TDTR |= ((uint32_t)CAN_TDT0R_TGT);
    CANx->sTxMailBox[1].TDTR |= ((uint32_t)CAN_TDT1R_TGT);
    CANx->sTxMailBox[2].TDTR |= ((uint32_t)CAN_TDT2R_TGT);
  }
  else
  {
    /* Disable the TTCM mode */
    CANx->MCR &= (uint32_t)(~(uint32_t)CAN_MCR_TTCM);

    /* Reset TGT bits */
    CANx->sTxMailBox[0].TDTR &= ((uint32_t)~CAN_TDT0R_TGT);
    CANx->sTxMailBox[1].TDTR &= ((uint32_t)~CAN_TDT1R_TGT);
    CANx->sTxMailBox[2].TDTR &= ((uint32_t)~CAN_TDT2R_TGT);
  }
}
/**
  * @brief  Initiates the transmission of a message.
  * @param  CANx:      where x can be 1 or 2 to to select the CAN peripheral.
  * @param  TxMessage: pointer to a structure which contains CAN Id, CAN
  *                    DLC and CAN data.
  * @retval The number of the mailbox that is used for transmission
  *                    or CAN_TxStatus_NoMailBox if there is no empty mailbox.
  */
uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage)
{
  uint8_t transmit_mailbox = 0;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_IDTYPE(TxMessage->IDE));
  assert_param(IS_CAN_RTR(TxMessage->RTR));
  assert_param(IS_CAN_DLC(TxMessage->DLC));

  /* Select one empty transmit mailbox */
  if ((CANx->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
  {
    transmit_mailbox = 0;
  }
  else if ((CANx->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
  {
    transmit_mailbox = 1;
  }
  else if ((CANx->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
  {
    transmit_mailbox = 2;
  }
  else
  {
    transmit_mailbox = CAN_TxStatus_NoMailBox;
  }

  if (transmit_mailbox != CAN_TxStatus_NoMailBox)
  {
    /* Set up the Id */
    CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ;
    if (TxMessage->IDE == CAN_Id_Standard)
    {
      assert_param(IS_CAN_STDID(TxMessage->StdId));  
      CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | \
                                                  TxMessage->RTR);
    }
    else
    {
      assert_param(IS_CAN_EXTID(TxMessage->ExtId));
      CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId << 3) | \
                                                  TxMessage->IDE | \
                                                  TxMessage->RTR);
    }
    
    /* Set up the DLC */
    TxMessage->DLC &= (uint8_t)0x0000000F;
    CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0;
    CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC;

    /* Set up the data field */
    CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) | 
                                             ((uint32_t)TxMessage->Data[2] << 16) |
                                             ((uint32_t)TxMessage->Data[1] << 8) | 
                                             ((uint32_t)TxMessage->Data[0]));
    CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) | 
                                             ((uint32_t)TxMessage->Data[6] << 16) |
                                             ((uint32_t)TxMessage->Data[5] << 8) |
                                             ((uint32_t)TxMessage->Data[4]));
    /* Request transmission */
    CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ;
  }
  return transmit_mailbox;
}

/**
  * @brief  Checks the transmission of a message.
  * @param  CANx:            where x can be 1 or 2 to to select the 
  *                          CAN peripheral.
  * @param  TransmitMailbox: the number of the mailbox that is used for 
  *                          transmission.
  * @retval CAN_TxStatus_Ok if the CAN driver transmits the message, CAN_TxStatus_Failed 
  *         in an other case.
  */
uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox)
{
  uint32_t state = 0;

  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
 
  switch (TransmitMailbox)
  {
    case (CAN_TXMAILBOX_0): 
      state =   CANx->TSR &  (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0);
      break;
    case (CAN_TXMAILBOX_1): 
      state =   CANx->TSR &  (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1);
      break;
    case (CAN_TXMAILBOX_2): 
      state =   CANx->TSR &  (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2);
      break;
    default:
      state = CAN_TxStatus_Failed;
      break;
  }
  switch (state)
  {
      /* transmit pending  */
    case (0x0): state = CAN_TxStatus_Pending;
      break;
      /* transmit failed  */
     case (CAN_TSR_RQCP0 | CAN_TSR_TME0): state = CAN_TxStatus_Failed;
      break;
     case (CAN_TSR_RQCP1 | CAN_TSR_TME1): state = CAN_TxStatus_Failed;
      break;
     case (CAN_TSR_RQCP2 | CAN_TSR_TME2): state = CAN_TxStatus_Failed;
      break;
      /* transmit succeeded  */
    case (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0):state = CAN_TxStatus_Ok;
      break;
    case (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1):state = CAN_TxStatus_Ok;
      break;
    case (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2):state = CAN_TxStatus_Ok;
      break;
    default: state = CAN_TxStatus_Failed;
      break;
  }
  return (uint8_t) state;
}

/**
  * @brief  Cancels a transmit request.
  * @param  CANx:     where x can be 1 or 2 to to select the CAN peripheral. 
  * @param  Mailbox:  Mailbox number.
  * @retval None.
  */
void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox));
  /* abort transmission */
  switch (Mailbox)
  {
    case (CAN_TXMAILBOX_0): CANx->TSR |= CAN_TSR_ABRQ0;
      break;
    case (CAN_TXMAILBOX_1): CANx->TSR |= CAN_TSR_ABRQ1;
      break;
    case (CAN_TXMAILBOX_2): CANx->TSR |= CAN_TSR_ABRQ2;
      break;
    default:
      break;
  }
}


/**
  * @brief  Receives a message.
  * @param  CANx:       where x can be 1 or 2 to to select the CAN peripheral.
  * @param  FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
  * @param  RxMessage:  pointer to a structure receive message which contains 
  *                     CAN Id, CAN DLC, CAN datas and FMI number.
  * @retval None.
  */
void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_FIFO(FIFONumber));
  /* Get the Id */
  RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR;
  if (RxMessage->IDE == CAN_Id_Standard)
  {
    RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21);
  }
  else
  {
    RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3);
  }
  
  RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR;
  /* Get the DLC */
  RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR;
  /* Get the FMI */
  RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8);
  /* Get the data field */
  RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR;
  RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8);
  RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16);
  RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24);
  RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR;
  RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8);
  RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16);
  RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24);
  /* Release the FIFO */
  /* Release FIFO0 */
  if (FIFONumber == CAN_FIFO0)
  {
    CANx->RF0R |= CAN_RF0R_RFOM0;
  }
  /* Release FIFO1 */
  else /* FIFONumber == CAN_FIFO1 */
  {
    CANx->RF1R |= CAN_RF1R_RFOM1;
  }
}

/**
  * @brief  Releases the specified FIFO.
  * @param  CANx:       where x can be 1 or 2 to to select the CAN peripheral. 
  * @param  FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
  * @retval None.
  */
void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_FIFO(FIFONumber));
  /* Release FIFO0 */
  if (FIFONumber == CAN_FIFO0)
  {
    CANx->RF0R |= CAN_RF0R_RFOM0;
  }
  /* Release FIFO1 */
  else /* FIFONumber == CAN_FIFO1 */
  {
    CANx->RF1R |= CAN_RF1R_RFOM1;
  }
}

/**
  * @brief  Returns the number of pending messages.
  * @param  CANx:       where x can be 1 or 2 to to select the CAN peripheral.
  * @param  FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
  * @retval NbMessage : which is the number of pending message.
  */
uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber)
{
  uint8_t message_pending=0;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_FIFO(FIFONumber));
  if (FIFONumber == CAN_FIFO0)
  {
    message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03);
  }
  else if (FIFONumber == CAN_FIFO1)
  {
    message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03);
  }
  else
  {
    message_pending = 0;
  }
  return message_pending;
}


/**
  * @brief   Select the CAN Operation mode.
  * @param CAN_OperatingMode : CAN Operating Mode. This parameter can be one 
  *                            of @ref CAN_OperatingMode_TypeDef enumeration.
  * @retval status of the requested mode which can be 
  *         - CAN_ModeStatus_Failed    CAN failed entering the specific mode 
  *         - CAN_ModeStatus_Success   CAN Succeed entering the specific mode 

  */
uint8_t CAN_OperatingModeRequest(CAN_TypeDef* CANx, uint8_t CAN_OperatingMode)
{
  uint8_t status = CAN_ModeStatus_Failed;
  
  /* Timeout for INAK or also for SLAK bits*/
  uint32_t timeout = INAK_TIMEOUT; 

  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_OPERATING_MODE(CAN_OperatingMode));

  if (CAN_OperatingMode == CAN_OperatingMode_Initialization)
  {
    /* Request initialisation */
    CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_SLEEP)) | CAN_MCR_INRQ);

    /* Wait the acknowledge */
    while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK) && (timeout != 0))
    {
      timeout--;
    }
    if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK)
    {
      status = CAN_ModeStatus_Failed;
    }
    else
    {
      status = CAN_ModeStatus_Success;
    }
  }
  else  if (CAN_OperatingMode == CAN_OperatingMode_Normal)
  {
    /* Request leave initialisation and sleep mode  and enter Normal mode */
    CANx->MCR &= (uint32_t)(~(CAN_MCR_SLEEP|CAN_MCR_INRQ));

    /* Wait the acknowledge */
    while (((CANx->MSR & CAN_MODE_MASK) != 0) && (timeout!=0))
    {
      timeout--;
    }
    if ((CANx->MSR & CAN_MODE_MASK) != 0)
    {
      status = CAN_ModeStatus_Failed;
    }
    else
    {
      status = CAN_ModeStatus_Success;
    }
  }
  else  if (CAN_OperatingMode == CAN_OperatingMode_Sleep)
  {
    /* Request Sleep mode */
    CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);

    /* Wait the acknowledge */
    while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK) && (timeout!=0))
    {
      timeout--;
    }
    if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK)
    {
      status = CAN_ModeStatus_Failed;
    }
    else
    {
      status = CAN_ModeStatus_Success;
    }
  }
  else
  {
    status = CAN_ModeStatus_Failed;
  }

  return  (uint8_t) status;
}

/**
  * @brief  Enters the low power mode.
  * @param  CANx:   where x can be 1 or 2 to to select the CAN peripheral.
  * @retval status: CAN_Sleep_Ok if sleep entered, CAN_Sleep_Failed in an 
  *                 other case.
  */
uint8_t CAN_Sleep(CAN_TypeDef* CANx)
{
  uint8_t sleepstatus = CAN_Sleep_Failed;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
    
  /* Request Sleep mode */
   CANx->MCR = (((CANx->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
   
  /* Sleep mode status */
  if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK)
  {
    /* Sleep mode not entered */
    sleepstatus =  CAN_Sleep_Ok;
  }
  /* return sleep mode status */
   return (uint8_t)sleepstatus;
}

/**
  * @brief  Wakes the CAN up.
  * @param  CANx:    where x can be 1 or 2 to to select the CAN peripheral.
  * @retval status:  CAN_WakeUp_Ok if sleep mode left, CAN_WakeUp_Failed in an 
  *                  other case.
  */
uint8_t CAN_WakeUp(CAN_TypeDef* CANx)
{
  uint32_t wait_slak = SLAK_TIMEOUT;
  uint8_t wakeupstatus = CAN_WakeUp_Failed;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
    
  /* Wake up request */
  CANx->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
    
  /* Sleep mode status */
  while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00))
  {
   wait_slak--;
  }
  if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK)
  {
   /* wake up done : Sleep mode exited */
    wakeupstatus = CAN_WakeUp_Ok;
  }
  /* return wakeup status */
  return (uint8_t)wakeupstatus;
}


/**
  * @brief  Returns the CANx's last error code (LEC).
  * @param  CANx:          where x can be 1 or 2 to to select the CAN peripheral.  
  * @retval CAN_ErrorCode: specifies the Error code : 
  *                        - CAN_ERRORCODE_NoErr            No Error  
  *                        - CAN_ERRORCODE_StuffErr         Stuff Error
  *                        - CAN_ERRORCODE_FormErr          Form Error
  *                        - CAN_ERRORCODE_ACKErr           Acknowledgment Error
  *                        - CAN_ERRORCODE_BitRecessiveErr  Bit Recessive Error
  *                        - CAN_ERRORCODE_BitDominantErr   Bit Dominant Error
  *                        - CAN_ERRORCODE_CRCErr           CRC Error
  *                        - CAN_ERRORCODE_SoftwareSetErr   Software Set Error  
  */
 
uint8_t CAN_GetLastErrorCode(CAN_TypeDef* CANx)
{
  uint8_t errorcode=0;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  
  /* Get the error code*/
  errorcode = (((uint8_t)CANx->ESR) & (uint8_t)CAN_ESR_LEC);
  
  /* Return the error code*/
  return errorcode;
}
/**
  * @brief  Returns the CANx Receive Error Counter (REC).
  * @note   In case of an error during reception, this counter is incremented 
  *         by 1 or by 8 depending on the error condition as defined by the CAN 
  *         standard. After every successful reception, the counter is 
  *         decremented by 1 or reset to 120 if its value was higher than 128. 
  *         When the counter value exceeds 127, the CAN controller enters the 
  *         error passive state.  
  * @param  CANx: where x can be 1 or 2 to to select the CAN peripheral.  
  * @retval CAN Receive Error Counter. 
  */
uint8_t CAN_GetReceiveErrorCounter(CAN_TypeDef* CANx)
{
  uint8_t counter=0;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  
  /* Get the Receive Error Counter*/
  counter = (uint8_t)((CANx->ESR & CAN_ESR_REC)>> 24);
  
  /* Return the Receive Error Counter*/
  return counter;
}


/**
  * @brief  Returns the LSB of the 9-bit CANx Transmit Error Counter(TEC).
  * @param  CANx:   where x can be 1 or 2 to to select the CAN peripheral.  
  * @retval LSB of the 9-bit CAN Transmit Error Counter. 
  */
uint8_t CAN_GetLSBTransmitErrorCounter(CAN_TypeDef* CANx)
{
  uint8_t counter=0;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  
  /* Get the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
  counter = (uint8_t)((CANx->ESR & CAN_ESR_TEC)>> 16);
  
  /* Return the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
  return counter;
}


/**
  * @brief  Enables or disables the specified CANx interrupts.
  * @param  CANx:   where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_IT: specifies the CAN interrupt sources to be enabled or disabled.
  *                 This parameter can be: 
  *                 - CAN_IT_TME, 
  *                 - CAN_IT_FMP0, 
  *                 - CAN_IT_FF0,
  *                 - CAN_IT_FOV0, 
  *                 - CAN_IT_FMP1, 
  *                 - CAN_IT_FF1,
  *                 - CAN_IT_FOV1, 
  *                 - CAN_IT_EWG, 
  *                 - CAN_IT_EPV,
  *                 - CAN_IT_LEC, 
  *                 - CAN_IT_ERR, 
  *                 - CAN_IT_WKU or 
  *                 - CAN_IT_SLK.
  * @param  NewState: new state of the CAN interrupts.
  *                   This parameter can be: ENABLE or DISABLE.
  * @retval None.
  */
void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_IT(CAN_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected CANx interrupt */
    CANx->IER |= CAN_IT;
  }
  else
  {
    /* Disable the selected CANx interrupt */
    CANx->IER &= ~CAN_IT;
  }
}
/**
  * @brief  Checks whether the specified CAN flag is set or not.
  * @param  CANx:     where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_FLAG: specifies the flag to check.
  *                   This parameter can be one of the following flags: 
  *                  - CAN_FLAG_EWG
  *                  - CAN_FLAG_EPV 
  *                  - CAN_FLAG_BOF
  *                  - CAN_FLAG_RQCP0
  *                  - CAN_FLAG_RQCP1
  *                  - CAN_FLAG_RQCP2
  *                  - CAN_FLAG_FMP1   
  *                  - CAN_FLAG_FF1       
  *                  - CAN_FLAG_FOV1   
  *                  - CAN_FLAG_FMP0   
  *                  - CAN_FLAG_FF0       
  *                  - CAN_FLAG_FOV0   
  *                  - CAN_FLAG_WKU 
  *                  - CAN_FLAG_SLAK  
  *                  - CAN_FLAG_LEC       
  * @retval The new state of CAN_FLAG (SET or RESET).
  */
FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
{
  FlagStatus bitstatus = RESET;
  
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_GET_FLAG(CAN_FLAG));
  

  if((CAN_FLAG & CAN_FLAGS_ESR) != (uint32_t)RESET)
  { 
    /* Check the status of the specified CAN flag */
    if ((CANx->ESR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  else if((CAN_FLAG & CAN_FLAGS_MSR) != (uint32_t)RESET)
  { 
    /* Check the status of the specified CAN flag */
    if ((CANx->MSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  else if((CAN_FLAG & CAN_FLAGS_TSR) != (uint32_t)RESET)
  { 
    /* Check the status of the specified CAN flag */
    if ((CANx->TSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  else if((CAN_FLAG & CAN_FLAGS_RF0R) != (uint32_t)RESET)
  { 
    /* Check the status of the specified CAN flag */
    if ((CANx->RF0R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  else /* If(CAN_FLAG & CAN_FLAGS_RF1R != (uint32_t)RESET) */
  { 
    /* Check the status of the specified CAN flag */
    if ((uint32_t)(CANx->RF1R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
    { 
      /* CAN_FLAG is set */
      bitstatus = SET;
    }
    else
    { 
      /* CAN_FLAG is reset */
      bitstatus = RESET;
    }
  }
  /* Return the CAN_FLAG status */
  return  bitstatus;
}

/**
  * @brief  Clears the CAN's pending flags.
  * @param  CANx:     where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_FLAG: specifies the flag to clear.
  *                   This parameter can be one of the following flags: 
  *                    - CAN_FLAG_RQCP0
  *                    - CAN_FLAG_RQCP1
  *                    - CAN_FLAG_RQCP2
  *                    - CAN_FLAG_FF1       
  *                    - CAN_FLAG_FOV1   
  *                    - CAN_FLAG_FF0       
  *                    - CAN_FLAG_FOV0   
  *                    - CAN_FLAG_WKU   
  *                    - CAN_FLAG_SLAK    
  *                    - CAN_FLAG_LEC       
  * @retval None.
  */
void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
{
  uint32_t flagtmp=0;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_CLEAR_FLAG(CAN_FLAG));
  
  if (CAN_FLAG == CAN_FLAG_LEC) /* ESR register */
  {
    /* Clear the selected CAN flags */
    CANx->ESR = (uint32_t)RESET;
  }
  else /* MSR or TSR or RF0R or RF1R */
  {
    flagtmp = CAN_FLAG & 0x000FFFFF;

    if ((CAN_FLAG & CAN_FLAGS_RF0R)!=(uint32_t)RESET)
    {
      /* Receive Flags */
      CANx->RF0R = (uint32_t)(flagtmp);
    }
    else if ((CAN_FLAG & CAN_FLAGS_RF1R)!=(uint32_t)RESET)
    {
      /* Receive Flags */
      CANx->RF1R = (uint32_t)(flagtmp);
    }
    else if ((CAN_FLAG & CAN_FLAGS_TSR)!=(uint32_t)RESET)
    {
      /* Transmit Flags */
      CANx->TSR = (uint32_t)(flagtmp);
    }
    else /* If((CAN_FLAG & CAN_FLAGS_MSR)!=(uint32_t)RESET) */
    {
      /* Operating mode Flags */
      CANx->MSR = (uint32_t)(flagtmp);
    }
  }
}

/**
  * @brief  Checks whether the specified CANx interrupt has occurred or not.
  * @param  CANx:    where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_IT:  specifies the CAN interrupt source to check.
  *                  This parameter can be one of the following flags: 
  *                 -  CAN_IT_TME               
  *                 -  CAN_IT_FMP0              
  *                 -  CAN_IT_FF0               
  *                 -  CAN_IT_FOV0              
  *                 -  CAN_IT_FMP1              
  *                 -  CAN_IT_FF1               
  *                 -  CAN_IT_FOV1              
  *                 -  CAN_IT_WKU  
  *                 -  CAN_IT_SLK  
  *                 -  CAN_IT_EWG    
  *                 -  CAN_IT_EPV    
  *                 -  CAN_IT_BOF    
  *                 -  CAN_IT_LEC    
  *                 -  CAN_IT_ERR 
  * @retval The current state of CAN_IT (SET or RESET).
  */
ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT)
{
  ITStatus itstatus = RESET;
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_IT(CAN_IT));
  
  /* check the enable interrupt bit */
 if((CANx->IER & CAN_IT) != RESET)
 {
   /* in case the Interrupt is enabled, .... */
    switch (CAN_IT)
    {
      case CAN_IT_TME:
               /* Check CAN_TSR_RQCPx bits */
	             itstatus = CheckITStatus(CANx->TSR, CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2);  
	      break;
      case CAN_IT_FMP0:
               /* Check CAN_RF0R_FMP0 bit */
	             itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FMP0);  
	      break;
      case CAN_IT_FF0:
               /* Check CAN_RF0R_FULL0 bit */
               itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FULL0);  
	      break;
      case CAN_IT_FOV0:
               /* Check CAN_RF0R_FOVR0 bit */
               itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FOVR0);  
	      break;
      case CAN_IT_FMP1:
               /* Check CAN_RF1R_FMP1 bit */
               itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FMP1);  
	      break;
      case CAN_IT_FF1:
               /* Check CAN_RF1R_FULL1 bit */
	             itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FULL1);  
	      break;
      case CAN_IT_FOV1:
               /* Check CAN_RF1R_FOVR1 bit */
	             itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FOVR1);  
	      break;
      case CAN_IT_WKU:
               /* Check CAN_MSR_WKUI bit */
               itstatus = CheckITStatus(CANx->MSR, CAN_MSR_WKUI);  
	      break;
      case CAN_IT_SLK:
               /* Check CAN_MSR_SLAKI bit */
	             itstatus = CheckITStatus(CANx->MSR, CAN_MSR_SLAKI);  
	      break;
      case CAN_IT_EWG:
               /* Check CAN_ESR_EWGF bit */
	             itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EWGF);  
	      break;
      case CAN_IT_EPV:
               /* Check CAN_ESR_EPVF bit */
	             itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EPVF);  
	      break;
      case CAN_IT_BOF:
               /* Check CAN_ESR_BOFF bit */
	             itstatus = CheckITStatus(CANx->ESR, CAN_ESR_BOFF);  
	      break;
      case CAN_IT_LEC:
               /* Check CAN_ESR_LEC bit */
	             itstatus = CheckITStatus(CANx->ESR, CAN_ESR_LEC);  
	      break;
      case CAN_IT_ERR:
               /* Check CAN_MSR_ERRI bit */ 
               itstatus = CheckITStatus(CANx->MSR, CAN_MSR_ERRI); 
	      break;
      default :
               /* in case of error, return RESET */
              itstatus = RESET;
              break;
    }
  }
  else
  {
   /* in case the Interrupt is not enabled, return RESET */
    itstatus  = RESET;
  }
  
  /* Return the CAN_IT status */
  return  itstatus;
}

/**
  * @brief  Clears the CANx's interrupt pending bits.
  * @param  CANx:    where x can be 1 or 2 to to select the CAN peripheral.
  * @param  CAN_IT: specifies the interrupt pending bit to clear.
  *                  -  CAN_IT_TME                     
  *                  -  CAN_IT_FF0               
  *                  -  CAN_IT_FOV0                     
  *                  -  CAN_IT_FF1               
  *                  -  CAN_IT_FOV1              
  *                  -  CAN_IT_WKU  
  *                  -  CAN_IT_SLK  
  *                  -  CAN_IT_EWG    
  *                  -  CAN_IT_EPV    
  *                  -  CAN_IT_BOF    
  *                  -  CAN_IT_LEC    
  *                  -  CAN_IT_ERR 
  * @retval None.
  */
void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT)
{
  /* Check the parameters */
  assert_param(IS_CAN_ALL_PERIPH(CANx));
  assert_param(IS_CAN_CLEAR_IT(CAN_IT));

  switch (CAN_IT)
  {
      case CAN_IT_TME:
              /* Clear CAN_TSR_RQCPx (rc_w1)*/
	      CANx->TSR = CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2;  
	      break;
      case CAN_IT_FF0:
              /* Clear CAN_RF0R_FULL0 (rc_w1)*/
	      CANx->RF0R = CAN_RF0R_FULL0; 
	      break;
      case CAN_IT_FOV0:
              /* Clear CAN_RF0R_FOVR0 (rc_w1)*/
	      CANx->RF0R = CAN_RF0R_FOVR0; 
	      break;
      case CAN_IT_FF1:
              /* Clear CAN_RF1R_FULL1 (rc_w1)*/
	      CANx->RF1R = CAN_RF1R_FULL1;  
	      break;
      case CAN_IT_FOV1:
              /* Clear CAN_RF1R_FOVR1 (rc_w1)*/
	      CANx->RF1R = CAN_RF1R_FOVR1; 
	      break;
      case CAN_IT_WKU:
              /* Clear CAN_MSR_WKUI (rc_w1)*/
	      CANx->MSR = CAN_MSR_WKUI;  
	      break;
      case CAN_IT_SLK:
              /* Clear CAN_MSR_SLAKI (rc_w1)*/ 
	      CANx->MSR = CAN_MSR_SLAKI;   
	      break;
      case CAN_IT_EWG:
              /* Clear CAN_MSR_ERRI (rc_w1) */
	      CANx->MSR = CAN_MSR_ERRI;
              /* Note : the corresponding Flag is cleared by hardware depending 
                        of the CAN Bus status*/ 
	      break;
      case CAN_IT_EPV:
              /* Clear CAN_MSR_ERRI (rc_w1) */
	      CANx->MSR = CAN_MSR_ERRI; 
              /* Note : the corresponding Flag is cleared by hardware depending 
                        of the CAN Bus status*/
	      break;
      case CAN_IT_BOF:
              /* Clear CAN_MSR_ERRI (rc_w1) */ 
	      CANx->MSR = CAN_MSR_ERRI; 
              /* Note : the corresponding Flag is cleared by hardware depending 
                        of the CAN Bus status*/
	      break;
      case CAN_IT_LEC:
              /*  Clear LEC bits */
	      CANx->ESR = RESET; 
              /* Clear CAN_MSR_ERRI (rc_w1) */
	      CANx->MSR = CAN_MSR_ERRI; 
	      break;
      case CAN_IT_ERR:
              /*Clear LEC bits */
	      CANx->ESR = RESET; 
              /* Clear CAN_MSR_ERRI (rc_w1) */
	      CANx->MSR = CAN_MSR_ERRI; 
	      /* Note : BOFF, EPVF and EWGF Flags are cleared by hardware depending 
                  of the CAN Bus status*/
	      break;
      default :
	      break;
   }
}

/**
  * @brief  Checks whether the CAN interrupt has occurred or not.
  * @param  CAN_Reg: specifies the CAN interrupt register to check.
  * @param  It_Bit:  specifies the interrupt source bit to check.
  * @retval The new state of the CAN Interrupt (SET or RESET).
  */
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
{
  ITStatus pendingbitstatus = RESET;
  
  if ((CAN_Reg & It_Bit) != (uint32_t)RESET)
  {
    /* CAN_IT is set */
    pendingbitstatus = SET;
  }
  else
  {
    /* CAN_IT is reset */
    pendingbitstatus = RESET;
  }
  return pendingbitstatus;
}


/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/