Blame view

cryptopp/xtr.h 5.14 KB
Imanol-Mikel Barba Sabariego authored
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#ifndef CRYPTOPP_XTR_H
#define CRYPTOPP_XTR_H

/** \file
	"The XTR public key system" by Arjen K. Lenstra and Eric R. Verheul
*/

#include "modarith.h"

NAMESPACE_BEGIN(CryptoPP)

//! an element of GF(p^2)
class GFP2Element
{
public:
	GFP2Element() {}
	GFP2Element(const Integer &c1, const Integer &c2) : c1(c1), c2(c2) {}
	GFP2Element(const byte *encodedElement, unsigned int size)
		: c1(encodedElement, size/2), c2(encodedElement+size/2, size/2) {}

	void Encode(byte *encodedElement, unsigned int size)
	{
		c1.Encode(encodedElement, size/2);
		c2.Encode(encodedElement+size/2, size/2);
	}

	bool operator==(const GFP2Element &rhs)	const {return c1 == rhs.c1 && c2 == rhs.c2;}
	bool operator!=(const GFP2Element &rhs) const {return !operator==(rhs);}

	void swap(GFP2Element &a)
	{
		c1.swap(a.c1);
		c2.swap(a.c2);
	}

	static const GFP2Element & Zero();

	Integer c1, c2;
};

//! GF(p^2), optimal normal basis
template <class F>
class GFP2_ONB : public AbstractRing<GFP2Element>
{
public:
	typedef F BaseField;

	GFP2_ONB(const Integer &p) : modp(p)
	{
		if (p%3 != 2)
			throw InvalidArgument("GFP2_ONB: modulus must be equivalent to 2 mod 3");
	}

	const Integer& GetModulus() const {return modp.GetModulus();}

	GFP2Element ConvertIn(const Integer &a) const
	{
		t = modp.Inverse(modp.ConvertIn(a));
		return GFP2Element(t, t);
	}

	GFP2Element ConvertIn(const GFP2Element &a) const
		{return GFP2Element(modp.ConvertIn(a.c1), modp.ConvertIn(a.c2));}

	GFP2Element ConvertOut(const GFP2Element &a) const
		{return GFP2Element(modp.ConvertOut(a.c1), modp.ConvertOut(a.c2));}

	bool Equal(const GFP2Element &a, const GFP2Element &b) const
	{
		return modp.Equal(a.c1, b.c1) && modp.Equal(a.c2, b.c2);
	}

	const Element& Identity() const
	{
		return GFP2Element::Zero();
	}

	const Element& Add(const Element &a, const Element &b) const
	{
		result.c1 = modp.Add(a.c1, b.c1);
		result.c2 = modp.Add(a.c2, b.c2);
		return result;
	}

	const Element& Inverse(const Element &a) const
	{
		result.c1 = modp.Inverse(a.c1);
		result.c2 = modp.Inverse(a.c2);
		return result;
	}

	const Element& Double(const Element &a) const
	{
		result.c1 = modp.Double(a.c1);
		result.c2 = modp.Double(a.c2);
		return result;
	}

	const Element& Subtract(const Element &a, const Element &b) const
	{
		result.c1 = modp.Subtract(a.c1, b.c1);
		result.c2 = modp.Subtract(a.c2, b.c2);
		return result;
	}

	Element& Accumulate(Element &a, const Element &b) const
	{
		modp.Accumulate(a.c1, b.c1);
		modp.Accumulate(a.c2, b.c2);
		return a;
	}

	Element& Reduce(Element &a, const Element &b) const
	{
		modp.Reduce(a.c1, b.c1);
		modp.Reduce(a.c2, b.c2);
		return a;
	}

	bool IsUnit(const Element &a) const
	{
		return a.c1.NotZero() || a.c2.NotZero();
	}

	const Element& MultiplicativeIdentity() const
	{
		result.c1 = result.c2 = modp.Inverse(modp.MultiplicativeIdentity());
		return result;
	}

	const Element& Multiply(const Element &a, const Element &b) const
	{
		t = modp.Add(a.c1, a.c2);
		t = modp.Multiply(t, modp.Add(b.c1, b.c2));
		result.c1 = modp.Multiply(a.c1, b.c1);
		result.c2 = modp.Multiply(a.c2, b.c2);
		result.c1.swap(result.c2);
		modp.Reduce(t, result.c1);
		modp.Reduce(t, result.c2);
		modp.Reduce(result.c1, t);
		modp.Reduce(result.c2, t);
		return result;
	}

	const Element& MultiplicativeInverse(const Element &a) const
	{
		return result = Exponentiate(a, modp.GetModulus()-2);
	}

	const Element& Square(const Element &a) const
	{
		const Integer &ac1 = (&a == &result) ? (t = a.c1) : a.c1;
		result.c1 = modp.Multiply(modp.Subtract(modp.Subtract(a.c2, a.c1), a.c1), a.c2);
		result.c2 = modp.Multiply(modp.Subtract(modp.Subtract(ac1, a.c2), a.c2), ac1);
		return result;
	}

	Element Exponentiate(const Element &a, const Integer &e) const
	{
		Integer edivp, emodp;
		Integer::Divide(emodp, edivp, e, modp.GetModulus());
		Element b = PthPower(a);
		return AbstractRing<GFP2Element>::CascadeExponentiate(a, emodp, b, edivp);
	}

	const Element & PthPower(const Element &a) const
	{
		result = a;
		result.c1.swap(result.c2);
		return result;
	}

	void RaiseToPthPower(Element &a) const
	{
		a.c1.swap(a.c2);
	}

	// a^2 - 2a^p
	const Element & SpecialOperation1(const Element &a) const
	{
		assert(&a != &result);
		result = Square(a);
		modp.Reduce(result.c1, a.c2);
		modp.Reduce(result.c1, a.c2);
		modp.Reduce(result.c2, a.c1);
		modp.Reduce(result.c2, a.c1);
		return result;
	}

	// x * z - y * z^p
	const Element & SpecialOperation2(const Element &x, const Element &y, const Element &z) const
	{
		assert(&x != &result && &y != &result && &z != &result);
		t = modp.Add(x.c2, y.c2);
		result.c1 = modp.Multiply(z.c1, modp.Subtract(y.c1, t));
		modp.Accumulate(result.c1, modp.Multiply(z.c2, modp.Subtract(t, x.c1)));
		t = modp.Add(x.c1, y.c1);
		result.c2 = modp.Multiply(z.c2, modp.Subtract(y.c2, t));
		modp.Accumulate(result.c2, modp.Multiply(z.c1, modp.Subtract(t, x.c2)));
		return result;
	}

protected:
	BaseField modp;
	mutable GFP2Element result;
	mutable Integer t;
};

void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits);

GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p);

NAMESPACE_END

#endif