Blame view

cryptopp/sha.cpp 25.2 KB
Imanol-Mikel Barba Sabariego authored
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// sha.cpp - modified by Wei Dai from Steve Reid's public domain sha1.c

// Steve Reid implemented SHA-1. Wei Dai implemented SHA-2.
// Both are in the public domain.

// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM sha.cpp" to generate MASM code

#include "pch.h"

#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM

#include "sha.h"
#include "misc.h"
#include "cpu.h"

NAMESPACE_BEGIN(CryptoPP)

// start of Steve Reid's code

#define blk0(i) (W[i] = data[i])
#define blk1(i) (W[i&15] = rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1))

void SHA1::InitState(HashWordType *state)
{
	state[0] = 0x67452301L;
	state[1] = 0xEFCDAB89L;
	state[2] = 0x98BADCFEL;
	state[3] = 0x10325476L;
	state[4] = 0xC3D2E1F0L;
}

#define f1(x,y,z) (z^(x&(y^z)))
#define f2(x,y,z) (x^y^z)
#define f3(x,y,z) ((x&y)|(z&(x|y)))
#define f4(x,y,z) (x^y^z)

/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30);
#define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30);
#define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rotlFixed(v,5);w=rotlFixed(w,30);
#define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlFixed(v,5);w=rotlFixed(w,30);
#define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlFixed(v,5);w=rotlFixed(w,30);

void SHA1::Transform(word32 *state, const word32 *data)
{
	word32 W[16];
    /* Copy context->state[] to working vars */
    word32 a = state[0];
    word32 b = state[1];
    word32 c = state[2];
    word32 d = state[3];
    word32 e = state[4];
    /* 4 rounds of 20 operations each. Loop unrolled. */
    R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
    R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
    R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
    R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
    R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
    R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
    R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
    R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
    R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
    R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
    R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
    R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
    R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
    R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
    R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
    R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
    R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
    R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
    R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
    R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
    /* Add the working vars back into context.state[] */
    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    state[4] += e;
}

// end of Steve Reid's code

// *************************************************************

void SHA224::InitState(HashWordType *state)
{
	static const word32 s[8] = {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};
	memcpy(state, s, sizeof(s));
}

void SHA256::InitState(HashWordType *state)
{
	static const word32 s[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
	memcpy(state, s, sizeof(s));
}

#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
CRYPTOPP_ALIGN_DATA(16) extern const word32 SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = {
#else
extern const word32 SHA256_K[64] = {
#endif
	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
	0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
	0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
	0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
	0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
	0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
	0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
	0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
	0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM

#if defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM)

#pragma warning(disable: 4731)	// frame pointer register 'ebp' modified by inline assembly code

static void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(word32 *state, const word32 *data, size_t len
#if defined(_MSC_VER) && (_MSC_VER == 1200)
	, ...	// VC60 workaround: prevent VC 6 from inlining this function
#endif
	)
{
#if defined(_MSC_VER) && (_MSC_VER == 1200)
	AS2(mov ecx, [state])
	AS2(mov edx, [data])
#endif

	#define LOCALS_SIZE	8*4 + 16*4 + 4*WORD_SZ
	#define H(i)		[BASE+ASM_MOD(1024+7-(i),8)*4]
	#define G(i)		H(i+1)
	#define F(i)		H(i+2)
	#define E(i)		H(i+3)
	#define D(i)		H(i+4)
	#define C(i)		H(i+5)
	#define B(i)		H(i+6)
	#define A(i)		H(i+7)
	#define Wt(i)		BASE+8*4+ASM_MOD(1024+15-(i),16)*4
	#define Wt_2(i)		Wt((i)-2)
	#define Wt_15(i)	Wt((i)-15)
	#define Wt_7(i)		Wt((i)-7)
	#define K_END		[BASE+8*4+16*4+0*WORD_SZ]
	#define STATE_SAVE	[BASE+8*4+16*4+1*WORD_SZ]
	#define DATA_SAVE	[BASE+8*4+16*4+2*WORD_SZ]
	#define DATA_END	[BASE+8*4+16*4+3*WORD_SZ]
	#define Kt(i)		WORD_REG(si)+(i)*4
#if CRYPTOPP_BOOL_X86
	#define BASE		esp+4
#elif defined(__GNUC__)
	#define BASE		r8
#else
	#define BASE		rsp
#endif

#define RA0(i, edx, edi)		\
	AS2(	add edx, [Kt(i)]	)\
	AS2(	add edx, [Wt(i)]	)\
	AS2(	add edx, H(i)		)\

#define RA1(i, edx, edi)

#define RB0(i, edx, edi)

#define RB1(i, edx, edi)	\
	AS2(	mov AS_REG_7d, [Wt_2(i)]	)\
	AS2(	mov edi, [Wt_15(i)])\
	AS2(	mov ebx, AS_REG_7d	)\
	AS2(	shr AS_REG_7d, 10		)\
	AS2(	ror ebx, 17		)\
	AS2(	xor AS_REG_7d, ebx	)\
	AS2(	ror ebx, 2		)\
	AS2(	xor ebx, AS_REG_7d	)/* s1(W_t-2) */\
	AS2(	add ebx, [Wt_7(i)])\
	AS2(	mov AS_REG_7d, edi	)\
	AS2(	shr AS_REG_7d, 3		)\
	AS2(	ror edi, 7		)\
	AS2(	add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\
	AS2(	xor AS_REG_7d, edi	)\
	AS2(	add edx, [Kt(i)])\
	AS2(	ror edi, 11		)\
	AS2(	add edx, H(i)	)\
	AS2(	xor AS_REG_7d, edi	)/* s0(W_t-15) */\
	AS2(	add AS_REG_7d, ebx	)/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\
	AS2(	mov [Wt(i)], AS_REG_7d)\
	AS2(	add edx, AS_REG_7d	)\

#define ROUND(i, r, eax, ecx, edi, edx)\
	/* in: edi = E	*/\
	/* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\
	AS2(	mov edx, F(i)	)\
	AS2(	xor edx, G(i)	)\
	AS2(	and edx, edi	)\
	AS2(	xor edx, G(i)	)/* Ch(E,F,G) = (G^(E&(F^G))) */\
	AS2(	mov AS_REG_7d, edi	)\
	AS2(	ror edi, 6		)\
	AS2(	ror AS_REG_7d, 25		)\
	RA##r(i, edx, edi		)/* H + Wt + Kt + Ch(E,F,G) */\
	AS2(	xor AS_REG_7d, edi	)\
	AS2(	ror edi, 5		)\
	AS2(	xor AS_REG_7d, edi	)/* S1(E) */\
	AS2(	add edx, AS_REG_7d	)/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\
	RB##r(i, edx, edi		)/* H + Wt + Kt + Ch(E,F,G) */\
	/* in: ecx = A, eax = B^C, edx = T1 */\
	/* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\
	AS2(	mov ebx, ecx	)\
	AS2(	xor ecx, B(i)	)/* A^B */\
	AS2(	and eax, ecx	)\
	AS2(	xor eax, B(i)	)/* Maj(A,B,C) = B^((A^B)&(B^C) */\
	AS2(	mov AS_REG_7d, ebx	)\
	AS2(	ror ebx, 2		)\
	AS2(	add eax, edx	)/* T1 + Maj(A,B,C) */\
	AS2(	add edx, D(i)	)\
	AS2(	mov D(i), edx	)\
	AS2(	ror AS_REG_7d, 22		)\
	AS2(	xor AS_REG_7d, ebx	)\
	AS2(	ror ebx, 11		)\
	AS2(	xor AS_REG_7d, ebx	)\
	AS2(	add eax, AS_REG_7d	)/* T1 + S0(A) + Maj(A,B,C) */\
	AS2(	mov H(i), eax	)\

#define SWAP_COPY(i)		\
	AS2(	mov		WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
	AS1(	bswap	WORD_REG(bx))\
	AS2(	mov		[Wt(i*(1+CRYPTOPP_BOOL_X64)+CRYPTOPP_BOOL_X64)], WORD_REG(bx))

#if defined(__GNUC__)
	#if CRYPTOPP_BOOL_X64
		FixedSizeAlignedSecBlock<byte, LOCALS_SIZE> workspace;
	#endif
	__asm__ __volatile__
	(
	#if CRYPTOPP_BOOL_X64
		"lea %4, %%r8;"
	#endif
	".intel_syntax noprefix;"
#elif defined(CRYPTOPP_GENERATE_X64_MASM)
		ALIGN   8
	X86_SHA256_HashBlocks	PROC FRAME
		rex_push_reg rsi
		push_reg rdi
		push_reg rbx
		push_reg rbp
		alloc_stack(LOCALS_SIZE+8)
		.endprolog
		mov rdi, r8
		lea rsi, [?SHA256_K@CryptoPP@@3QBIB + 48*4]
#endif

#if CRYPTOPP_BOOL_X86
	#ifndef __GNUC__
		AS2(	mov		edi, [len])
		AS2(	lea		WORD_REG(si), [SHA256_K+48*4])
	#endif
	#if !defined(_MSC_VER) || (_MSC_VER < 1400)
		AS_PUSH_IF86(bx)
	#endif

	AS_PUSH_IF86(bp)
	AS2(	mov		ebx, esp)
	AS2(	and		esp, -16)
	AS2(	sub		WORD_REG(sp), LOCALS_SIZE)
	AS_PUSH_IF86(bx)
#endif
	AS2(	mov		STATE_SAVE, WORD_REG(cx))
	AS2(	mov		DATA_SAVE, WORD_REG(dx))
	AS2(	lea		WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)])
	AS2(	mov		DATA_END, WORD_REG(ax))
	AS2(	mov		K_END, WORD_REG(si))

#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86
	AS2(	test	edi, 1)
	ASJ(	jnz,	2, f)
	AS1(	dec		DWORD PTR K_END)
#endif
	AS2(	movdqa	xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16])
	AS2(	movdqa	xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16])
#endif

#if CRYPTOPP_BOOL_X86
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
	ASJ(	jmp,	0, f)
#endif
	ASL(2)	// non-SSE2
	AS2(	mov		esi, ecx)
	AS2(	lea		edi, A(0))
	AS2(	mov		ecx, 8)
	AS1(	rep movsd)
	AS2(	mov		esi, K_END)
	ASJ(	jmp,	3, f)
#endif

#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
	ASL(0)
	AS2(	movdqa	E(0), xmm1)
	AS2(	movdqa	A(0), xmm0)
#endif
#if CRYPTOPP_BOOL_X86
	ASL(3)
#endif
	AS2(	sub		WORD_REG(si), 48*4)
	SWAP_COPY(0)	SWAP_COPY(1)	SWAP_COPY(2)	SWAP_COPY(3)
	SWAP_COPY(4)	SWAP_COPY(5)	SWAP_COPY(6)	SWAP_COPY(7)
#if CRYPTOPP_BOOL_X86
	SWAP_COPY(8)	SWAP_COPY(9)	SWAP_COPY(10)	SWAP_COPY(11)
	SWAP_COPY(12)	SWAP_COPY(13)	SWAP_COPY(14)	SWAP_COPY(15)
#endif
	AS2(	mov		edi, E(0))	// E
	AS2(	mov		eax, B(0))	// B
	AS2(	xor		eax, C(0))	// B^C
	AS2(	mov		ecx, A(0))	// A

	ROUND(0, 0, eax, ecx, edi, edx)
	ROUND(1, 0, ecx, eax, edx, edi)
	ROUND(2, 0, eax, ecx, edi, edx)
	ROUND(3, 0, ecx, eax, edx, edi)
	ROUND(4, 0, eax, ecx, edi, edx)
	ROUND(5, 0, ecx, eax, edx, edi)
	ROUND(6, 0, eax, ecx, edi, edx)
	ROUND(7, 0, ecx, eax, edx, edi)
	ROUND(8, 0, eax, ecx, edi, edx)
	ROUND(9, 0, ecx, eax, edx, edi)
	ROUND(10, 0, eax, ecx, edi, edx)
	ROUND(11, 0, ecx, eax, edx, edi)
	ROUND(12, 0, eax, ecx, edi, edx)
	ROUND(13, 0, ecx, eax, edx, edi)
	ROUND(14, 0, eax, ecx, edi, edx)
	ROUND(15, 0, ecx, eax, edx, edi)

	ASL(1)
	AS2(add WORD_REG(si), 4*16)
	ROUND(0, 1, eax, ecx, edi, edx)
	ROUND(1, 1, ecx, eax, edx, edi)
	ROUND(2, 1, eax, ecx, edi, edx)
	ROUND(3, 1, ecx, eax, edx, edi)
	ROUND(4, 1, eax, ecx, edi, edx)
	ROUND(5, 1, ecx, eax, edx, edi)
	ROUND(6, 1, eax, ecx, edi, edx)
	ROUND(7, 1, ecx, eax, edx, edi)
	ROUND(8, 1, eax, ecx, edi, edx)
	ROUND(9, 1, ecx, eax, edx, edi)
	ROUND(10, 1, eax, ecx, edi, edx)
	ROUND(11, 1, ecx, eax, edx, edi)
	ROUND(12, 1, eax, ecx, edi, edx)
	ROUND(13, 1, ecx, eax, edx, edi)
	ROUND(14, 1, eax, ecx, edi, edx)
	ROUND(15, 1, ecx, eax, edx, edi)
	AS2(	cmp		WORD_REG(si), K_END)
	ASJ(	jb,		1, b)

	AS2(	mov		WORD_REG(dx), DATA_SAVE)
	AS2(	add		WORD_REG(dx), 64)
	AS2(	mov		AS_REG_7, STATE_SAVE)
	AS2(	mov		DATA_SAVE, WORD_REG(dx))

#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86
	AS2(	test	DWORD PTR K_END, 1)
	ASJ(	jz,		4, f)
#endif
	AS2(	movdqa	xmm1, XMMWORD_PTR [AS_REG_7+1*16])
	AS2(	movdqa	xmm0, XMMWORD_PTR [AS_REG_7+0*16])
	AS2(	paddd	xmm1, E(0))
	AS2(	paddd	xmm0, A(0))
	AS2(	movdqa	[AS_REG_7+1*16], xmm1)
	AS2(	movdqa	[AS_REG_7+0*16], xmm0)
	AS2(	cmp		WORD_REG(dx), DATA_END)
	ASJ(	jb,		0, b)
#endif

#if CRYPTOPP_BOOL_X86
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
	ASJ(	jmp,	5, f)
	ASL(4)	// non-SSE2
#endif
	AS2(	add		[AS_REG_7+0*4], ecx)	// A
	AS2(	add		[AS_REG_7+4*4], edi)	// E
	AS2(	mov		eax, B(0))
	AS2(	mov		ebx, C(0))
	AS2(	mov		ecx, D(0))
	AS2(	add		[AS_REG_7+1*4], eax)
	AS2(	add		[AS_REG_7+2*4], ebx)
	AS2(	add		[AS_REG_7+3*4], ecx)
	AS2(	mov		eax, F(0))
	AS2(	mov		ebx, G(0))
	AS2(	mov		ecx, H(0))
	AS2(	add		[AS_REG_7+5*4], eax)
	AS2(	add		[AS_REG_7+6*4], ebx)
	AS2(	add		[AS_REG_7+7*4], ecx)
	AS2(	mov		ecx, AS_REG_7d)
	AS2(	cmp		WORD_REG(dx), DATA_END)
	ASJ(	jb,		2, b)
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
	ASL(5)
#endif
#endif

	AS_POP_IF86(sp)
	AS_POP_IF86(bp)
	#if !defined(_MSC_VER) || (_MSC_VER < 1400)
		AS_POP_IF86(bx)
	#endif

#ifdef CRYPTOPP_GENERATE_X64_MASM
	add		rsp, LOCALS_SIZE+8
	pop		rbp
	pop		rbx
	pop		rdi
	pop		rsi
	ret
	X86_SHA256_HashBlocks ENDP
#endif

#ifdef __GNUC__
	".att_syntax prefix;"
	: 
	: "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len)
	#if CRYPTOPP_BOOL_X64
		, "m" (workspace[0])
	#endif
	: "memory", "cc", "%eax"
	#if CRYPTOPP_BOOL_X64
		, "%rbx", "%r8", "%r10"
	#endif
	);
#endif
}

#endif	// #if defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM)

#ifndef CRYPTOPP_GENERATE_X64_MASM

#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" {
void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(word32 *state, const word32 *data, size_t len);
}
#endif

#if defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X64_MASM_AVAILABLE)

size_t SHA256::HashMultipleBlocks(const word32 *input, size_t length)
{
	X86_SHA256_HashBlocks(m_state, input, (length&(size_t(0)-BLOCKSIZE)) - !HasSSE2());
	return length % BLOCKSIZE;
}

size_t SHA224::HashMultipleBlocks(const word32 *input, size_t length)
{
	X86_SHA256_HashBlocks(m_state, input, (length&(size_t(0)-BLOCKSIZE)) - !HasSSE2());
	return length % BLOCKSIZE;
}

#endif

#define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15]))

#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) (y^((x^y)&(y^z)))

#define a(i) T[(0-i)&7]
#define b(i) T[(1-i)&7]
#define c(i) T[(2-i)&7]
#define d(i) T[(3-i)&7]
#define e(i) T[(4-i)&7]
#define f(i) T[(5-i)&7]
#define g(i) T[(6-i)&7]
#define h(i) T[(7-i)&7]

#define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i));\
	d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))

// for SHA256
#define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22))
#define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25))
#define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3))
#define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10))

void SHA256::Transform(word32 *state, const word32 *data)
{
	word32 W[16];
#if defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X64_MASM_AVAILABLE)
	// this byte reverse is a waste of time, but this function is only called by MDC
	ByteReverse(W, data, BLOCKSIZE);
	X86_SHA256_HashBlocks(state, W, BLOCKSIZE - !HasSSE2());
#else
	word32 T[8];
    /* Copy context->state[] to working vars */
	memcpy(T, state, sizeof(T));
    /* 64 operations, partially loop unrolled */
	for (unsigned int j=0; j<64; j+=16)
	{
		R( 0); R( 1); R( 2); R( 3);
		R( 4); R( 5); R( 6); R( 7);
		R( 8); R( 9); R(10); R(11);
		R(12); R(13); R(14); R(15);
	}
    /* Add the working vars back into context.state[] */
    state[0] += a(0);
    state[1] += b(0);
    state[2] += c(0);
    state[3] += d(0);
    state[4] += e(0);
    state[5] += f(0);
    state[6] += g(0);
    state[7] += h(0);
#endif
}

/* 
// smaller but slower
void SHA256::Transform(word32 *state, const word32 *data)
{
	word32 T[20];
	word32 W[32];
	unsigned int i = 0, j = 0;
	word32 *t = T+8;

	memcpy(t, state, 8*4);
	word32 e = t[4], a = t[0];

	do 
	{
		word32 w = data[j];
		W[j] = w;
		w += SHA256_K[j];
		w += t[7];
		w += S1(e);
		w += Ch(e, t[5], t[6]);
		e = t[3] + w;
		t[3] = t[3+8] = e;
		w += S0(t[0]);
		a = w + Maj(a, t[1], t[2]);
		t[-1] = t[7] = a;
		--t;
		++j;
		if (j%8 == 0)
			t += 8;
	} while (j<16);

	do
	{
		i = j&0xf;
		word32 w = s1(W[i+16-2]) + s0(W[i+16-15]) + W[i] + W[i+16-7];
		W[i+16] = W[i] = w;
		w += SHA256_K[j];
		w += t[7];
		w += S1(e);
		w += Ch(e, t[5], t[6]);
		e = t[3] + w;
		t[3] = t[3+8] = e;
		w += S0(t[0]);
		a = w + Maj(a, t[1], t[2]);
		t[-1] = t[7] = a;

		w = s1(W[(i+1)+16-2]) + s0(W[(i+1)+16-15]) + W[(i+1)] + W[(i+1)+16-7];
		W[(i+1)+16] = W[(i+1)] = w;
		w += SHA256_K[j+1];
		w += (t-1)[7];
		w += S1(e);
		w += Ch(e, (t-1)[5], (t-1)[6]);
		e = (t-1)[3] + w;
		(t-1)[3] = (t-1)[3+8] = e;
		w += S0((t-1)[0]);
		a = w + Maj(a, (t-1)[1], (t-1)[2]);
		(t-1)[-1] = (t-1)[7] = a;

		t-=2;
		j+=2;
		if (j%8 == 0)
			t += 8;
	} while (j<64);

    state[0] += a;
    state[1] += t[1];
    state[2] += t[2];
    state[3] += t[3];
    state[4] += e;
    state[5] += t[5];
    state[6] += t[6];
    state[7] += t[7];
}
*/

#undef S0
#undef S1
#undef s0
#undef s1
#undef R

// *************************************************************

void SHA384::InitState(HashWordType *state)
{
	static const word64 s[8] = {
		W64LIT(0xcbbb9d5dc1059ed8), W64LIT(0x629a292a367cd507),
		W64LIT(0x9159015a3070dd17), W64LIT(0x152fecd8f70e5939),
		W64LIT(0x67332667ffc00b31), W64LIT(0x8eb44a8768581511),
		W64LIT(0xdb0c2e0d64f98fa7), W64LIT(0x47b5481dbefa4fa4)};
	memcpy(state, s, sizeof(s));
}

void SHA512::InitState(HashWordType *state)
{
	static const word64 s[8] = {
		W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b),
		W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1),
		W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f),
		W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179)};
	memcpy(state, s, sizeof(s));
}

#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
CRYPTOPP_ALIGN_DATA(16) static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN16 = {
#else
static const word64 SHA512_K[80] = {
#endif
	W64LIT(0x428a2f98d728ae22), W64LIT(0x7137449123ef65cd),
	W64LIT(0xb5c0fbcfec4d3b2f), W64LIT(0xe9b5dba58189dbbc),
	W64LIT(0x3956c25bf348b538), W64LIT(0x59f111f1b605d019),
	W64LIT(0x923f82a4af194f9b), W64LIT(0xab1c5ed5da6d8118),
	W64LIT(0xd807aa98a3030242), W64LIT(0x12835b0145706fbe),
	W64LIT(0x243185be4ee4b28c), W64LIT(0x550c7dc3d5ffb4e2),
	W64LIT(0x72be5d74f27b896f), W64LIT(0x80deb1fe3b1696b1),
	W64LIT(0x9bdc06a725c71235), W64LIT(0xc19bf174cf692694),
	W64LIT(0xe49b69c19ef14ad2), W64LIT(0xefbe4786384f25e3),
	W64LIT(0x0fc19dc68b8cd5b5), W64LIT(0x240ca1cc77ac9c65),
	W64LIT(0x2de92c6f592b0275), W64LIT(0x4a7484aa6ea6e483),
	W64LIT(0x5cb0a9dcbd41fbd4), W64LIT(0x76f988da831153b5),
	W64LIT(0x983e5152ee66dfab), W64LIT(0xa831c66d2db43210),
	W64LIT(0xb00327c898fb213f), W64LIT(0xbf597fc7beef0ee4),
	W64LIT(0xc6e00bf33da88fc2), W64LIT(0xd5a79147930aa725),
	W64LIT(0x06ca6351e003826f), W64LIT(0x142929670a0e6e70),
	W64LIT(0x27b70a8546d22ffc), W64LIT(0x2e1b21385c26c926),
	W64LIT(0x4d2c6dfc5ac42aed), W64LIT(0x53380d139d95b3df),
	W64LIT(0x650a73548baf63de), W64LIT(0x766a0abb3c77b2a8),
	W64LIT(0x81c2c92e47edaee6), W64LIT(0x92722c851482353b),
	W64LIT(0xa2bfe8a14cf10364), W64LIT(0xa81a664bbc423001),
	W64LIT(0xc24b8b70d0f89791), W64LIT(0xc76c51a30654be30),
	W64LIT(0xd192e819d6ef5218), W64LIT(0xd69906245565a910),
	W64LIT(0xf40e35855771202a), W64LIT(0x106aa07032bbd1b8),
	W64LIT(0x19a4c116b8d2d0c8), W64LIT(0x1e376c085141ab53),
	W64LIT(0x2748774cdf8eeb99), W64LIT(0x34b0bcb5e19b48a8),
	W64LIT(0x391c0cb3c5c95a63), W64LIT(0x4ed8aa4ae3418acb),
	W64LIT(0x5b9cca4f7763e373), W64LIT(0x682e6ff3d6b2b8a3),
	W64LIT(0x748f82ee5defb2fc), W64LIT(0x78a5636f43172f60),
	W64LIT(0x84c87814a1f0ab72), W64LIT(0x8cc702081a6439ec),
	W64LIT(0x90befffa23631e28), W64LIT(0xa4506cebde82bde9),
	W64LIT(0xbef9a3f7b2c67915), W64LIT(0xc67178f2e372532b),
	W64LIT(0xca273eceea26619c), W64LIT(0xd186b8c721c0c207),
	W64LIT(0xeada7dd6cde0eb1e), W64LIT(0xf57d4f7fee6ed178),
	W64LIT(0x06f067aa72176fba), W64LIT(0x0a637dc5a2c898a6),
	W64LIT(0x113f9804bef90dae), W64LIT(0x1b710b35131c471b),
	W64LIT(0x28db77f523047d84), W64LIT(0x32caab7b40c72493),
	W64LIT(0x3c9ebe0a15c9bebc), W64LIT(0x431d67c49c100d4c),
	W64LIT(0x4cc5d4becb3e42b6), W64LIT(0x597f299cfc657e2a),
	W64LIT(0x5fcb6fab3ad6faec), W64LIT(0x6c44198c4a475817)
};

#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
// put assembly version in separate function, otherwise MSVC 2005 SP1 doesn't generate correct code for the non-assembly version
CRYPTOPP_NAKED static void CRYPTOPP_FASTCALL SHA512_SSE2_Transform(word64 *state, const word64 *data)
{
#ifdef __GNUC__
	__asm__ __volatile__
	(
		".intel_syntax noprefix;"
	AS1(	push	ebx)
	AS2(	mov		ebx, eax)
#else
	AS1(	push	ebx)
	AS1(	push	esi)
	AS1(	push	edi)
	AS2(	lea		ebx, SHA512_K)
#endif

	AS2(	mov		eax, esp)
	AS2(	and		esp, 0xfffffff0)
	AS2(	sub		esp, 27*16)				// 17*16 for expanded data, 20*8 for state
	AS1(	push	eax)
	AS2(	xor		eax, eax)
	AS2(	lea		edi, [esp+4+8*8])		// start at middle of state buffer. will decrement pointer each round to avoid copying
	AS2(	lea		esi, [esp+4+20*8+8])	// 16-byte alignment, then add 8

	AS2(	movdqa	xmm0, [ecx+0*16])
	AS2(	movdq2q	mm4, xmm0)
	AS2(	movdqa	[edi+0*16], xmm0)
	AS2(	movdqa	xmm0, [ecx+1*16])
	AS2(	movdqa	[edi+1*16], xmm0)
	AS2(	movdqa	xmm0, [ecx+2*16])
	AS2(	movdq2q	mm5, xmm0)
	AS2(	movdqa	[edi+2*16], xmm0)
	AS2(	movdqa	xmm0, [ecx+3*16])
	AS2(	movdqa	[edi+3*16], xmm0)
	ASJ(	jmp,	0, f)

#define SSE2_S0_S1(r, a, b, c)	\
	AS2(	movq	mm6, r)\
	AS2(	psrlq	r, a)\
	AS2(	movq	mm7, r)\
	AS2(	psllq	mm6, 64-c)\
	AS2(	pxor	mm7, mm6)\
	AS2(	psrlq	r, b-a)\
	AS2(	pxor	mm7, r)\
	AS2(	psllq	mm6, c-b)\
	AS2(	pxor	mm7, mm6)\
	AS2(	psrlq	r, c-b)\
	AS2(	pxor	r, mm7)\
	AS2(	psllq	mm6, b-a)\
	AS2(	pxor	r, mm6)

#define SSE2_s0(r, a, b, c)	\
	AS2(	movdqa	xmm6, r)\
	AS2(	psrlq	r, a)\
	AS2(	movdqa	xmm7, r)\
	AS2(	psllq	xmm6, 64-c)\
	AS2(	pxor	xmm7, xmm6)\
	AS2(	psrlq	r, b-a)\
	AS2(	pxor	xmm7, r)\
	AS2(	psrlq	r, c-b)\
	AS2(	pxor	r, xmm7)\
	AS2(	psllq	xmm6, c-a)\
	AS2(	pxor	r, xmm6)

#define SSE2_s1(r, a, b, c)	\
	AS2(	movdqa	xmm6, r)\
	AS2(	psrlq	r, a)\
	AS2(	movdqa	xmm7, r)\
	AS2(	psllq	xmm6, 64-c)\
	AS2(	pxor	xmm7, xmm6)\
	AS2(	psrlq	r, b-a)\
	AS2(	pxor	xmm7, r)\
	AS2(	psllq	xmm6, c-b)\
	AS2(	pxor	xmm7, xmm6)\
	AS2(	psrlq	r, c-b)\
	AS2(	pxor	r, xmm7)

	ASL(SHA512_Round)
	// k + w is in mm0, a is in mm4, e is in mm5
	AS2(	paddq	mm0, [edi+7*8])		// h
	AS2(	movq	mm2, [edi+5*8])		// f
	AS2(	movq	mm3, [edi+6*8])		// g
	AS2(	pxor	mm2, mm3)
	AS2(	pand	mm2, mm5)
	SSE2_S0_S1(mm5,14,18,41)
	AS2(	pxor	mm2, mm3)
	AS2(	paddq	mm0, mm2)			// h += Ch(e,f,g)
	AS2(	paddq	mm5, mm0)			// h += S1(e)
	AS2(	movq	mm2, [edi+1*8])		// b
	AS2(	movq	mm1, mm2)
	AS2(	por		mm2, mm4)
	AS2(	pand	mm2, [edi+2*8])		// c
	AS2(	pand	mm1, mm4)
	AS2(	por		mm1, mm2)
	AS2(	paddq	mm1, mm5)			// temp = h + Maj(a,b,c)
	AS2(	paddq	mm5, [edi+3*8])		// e = d + h
	AS2(	movq	[edi+3*8], mm5)
	AS2(	movq	[edi+11*8], mm5)
	SSE2_S0_S1(mm4,28,34,39)			// S0(a)
	AS2(	paddq	mm4, mm1)			// a = temp + S0(a)
	AS2(	movq	[edi-8], mm4)
	AS2(	movq	[edi+7*8], mm4)
	AS1(	ret)

	// first 16 rounds
	ASL(0)
	AS2(	movq	mm0, [edx+eax*8])
	AS2(	movq	[esi+eax*8], mm0)
	AS2(	movq	[esi+eax*8+16*8], mm0)
	AS2(	paddq	mm0, [ebx+eax*8])
	ASC(	call,	SHA512_Round)
	AS1(	inc		eax)
	AS2(	sub		edi, 8)
	AS2(	test	eax, 7)
	ASJ(	jnz,	0, b)
	AS2(	add		edi, 8*8)
	AS2(	cmp		eax, 16)
	ASJ(	jne,	0, b)

	// rest of the rounds
	AS2(	movdqu	xmm0, [esi+(16-2)*8])
	ASL(1)
	// data expansion, W[i-2] already in xmm0
	AS2(	movdqu	xmm3, [esi])
	AS2(	paddq	xmm3, [esi+(16-7)*8])
	AS2(	movdqa	xmm2, [esi+(16-15)*8])
	SSE2_s1(xmm0, 6, 19, 61)
	AS2(	paddq	xmm0, xmm3)
	SSE2_s0(xmm2, 1, 7, 8)
	AS2(	paddq	xmm0, xmm2)
	AS2(	movdq2q	mm0, xmm0)
	AS2(	movhlps	xmm1, xmm0)
	AS2(	paddq	mm0, [ebx+eax*8])
	AS2(	movlps	[esi], xmm0)
	AS2(	movlps	[esi+8], xmm1)
	AS2(	movlps	[esi+8*16], xmm0)
	AS2(	movlps	[esi+8*17], xmm1)
	// 2 rounds
	ASC(	call,	SHA512_Round)
	AS2(	sub		edi, 8)
	AS2(	movdq2q	mm0, xmm1)
	AS2(	paddq	mm0, [ebx+eax*8+8])
	ASC(	call,	SHA512_Round)
	// update indices and loop
	AS2(	add		esi, 16)
	AS2(	add		eax, 2)
	AS2(	sub		edi, 8)
	AS2(	test	eax, 7)
	ASJ(	jnz,	1, b)
	// do housekeeping every 8 rounds
	AS2(	mov		esi, 0xf)
	AS2(	and		esi, eax)
	AS2(	lea		esi, [esp+4+20*8+8+esi*8])
	AS2(	add		edi, 8*8)
	AS2(	cmp		eax, 80)
	ASJ(	jne,	1, b)

#define SSE2_CombineState(i)	\
	AS2(	movdqa	xmm0, [edi+i*16])\
	AS2(	paddq	xmm0, [ecx+i*16])\
	AS2(	movdqa	[ecx+i*16], xmm0)

	SSE2_CombineState(0)
	SSE2_CombineState(1)
	SSE2_CombineState(2)
	SSE2_CombineState(3)

	AS1(	pop		esp)
	AS1(	emms)

#if defined(__GNUC__)
	AS1(	pop		ebx)
	".att_syntax prefix;"
		:
		: "a" (SHA512_K), "c" (state), "d" (data)
		: "%esi", "%edi", "memory", "cc"
	);
#else
	AS1(	pop		edi)
	AS1(	pop		esi)
	AS1(	pop		ebx)
	AS1(	ret)
#endif
}
#endif	// #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE

void SHA512::Transform(word64 *state, const word64 *data)
{
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
	if (HasSSE2())
	{
		SHA512_SSE2_Transform(state, data);
		return;
	}
#endif

#define S0(x) (rotrFixed(x,28)^rotrFixed(x,34)^rotrFixed(x,39))
#define S1(x) (rotrFixed(x,14)^rotrFixed(x,18)^rotrFixed(x,41))
#define s0(x) (rotrFixed(x,1)^rotrFixed(x,8)^(x>>7))
#define s1(x) (rotrFixed(x,19)^rotrFixed(x,61)^(x>>6))

#define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+(j?blk2(i):blk0(i));\
	d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))

	word64 W[16];
	word64 T[8];
    /* Copy context->state[] to working vars */
	memcpy(T, state, sizeof(T));
    /* 80 operations, partially loop unrolled */
	for (unsigned int j=0; j<80; j+=16)
	{
		R( 0); R( 1); R( 2); R( 3);
		R( 4); R( 5); R( 6); R( 7);
		R( 8); R( 9); R(10); R(11);
		R(12); R(13); R(14); R(15);
	}
    /* Add the working vars back into context.state[] */
    state[0] += a(0);
    state[1] += b(0);
    state[2] += c(0);
    state[3] += d(0);
    state[4] += e(0);
    state[5] += f(0);
    state[6] += g(0);
    state[7] += h(0);
}

NAMESPACE_END

#endif	// #ifndef CRYPTOPP_GENERATE_X64_MASM
#endif	// #ifndef CRYPTOPP_IMPORTS