Blame view

Socket/cryptopp/zinflate.cpp 16.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// zinflate.cpp - written and placed in the public domain by Wei Dai

// This is a complete reimplementation of the DEFLATE decompression algorithm.
// It should not be affected by any security vulnerabilities in the zlib 
// compression library. In particular it is not affected by the double free bug
// (http://www.kb.cert.org/vuls/id/368819).

#include "pch.h"
#include "zinflate.h"

NAMESPACE_BEGIN(CryptoPP)

struct CodeLessThan
{
	inline bool operator()(CryptoPP::HuffmanDecoder::code_t lhs, const CryptoPP::HuffmanDecoder::CodeInfo &rhs)
		{return lhs < rhs.code;}
	// needed for MSVC .NET 2005
	inline bool operator()(const CryptoPP::HuffmanDecoder::CodeInfo &lhs, const CryptoPP::HuffmanDecoder::CodeInfo &rhs)
		{return lhs.code < rhs.code;}
};

inline bool LowFirstBitReader::FillBuffer(unsigned int length)
{
	while (m_bitsBuffered < length)
	{
		byte b;
		if (!m_store.Get(b))
			return false;
		m_buffer |= (unsigned long)b << m_bitsBuffered;
		m_bitsBuffered += 8;
	}
	assert(m_bitsBuffered <= sizeof(unsigned long)*8);
	return true;
}

inline unsigned long LowFirstBitReader::PeekBits(unsigned int length)
{
	bool result = FillBuffer(length);
	assert(result);
	return m_buffer & (((unsigned long)1 << length) - 1);
}

inline void LowFirstBitReader::SkipBits(unsigned int length)
{
	assert(m_bitsBuffered >= length);
	m_buffer >>= length;
	m_bitsBuffered -= length;
}

inline unsigned long LowFirstBitReader::GetBits(unsigned int length)
{
	unsigned long result = PeekBits(length);
	SkipBits(length);
	return result;
}

inline HuffmanDecoder::code_t HuffmanDecoder::NormalizeCode(HuffmanDecoder::code_t code, unsigned int codeBits)
{
	return code << (MAX_CODE_BITS - codeBits);
}

void HuffmanDecoder::Initialize(const unsigned int *codeBits, unsigned int nCodes)
{
	// the Huffman codes are represented in 3 ways in this code:
	//
	// 1. most significant code bit (i.e. top of code tree) in the least significant bit position
	// 2. most significant code bit (i.e. top of code tree) in the most significant bit position
	// 3. most significant code bit (i.e. top of code tree) in n-th least significant bit position,
	//    where n is the maximum code length for this code tree
	//
	// (1) is the way the codes come in from the deflate stream
	// (2) is used to sort codes so they can be binary searched
	// (3) is used in this function to compute codes from code lengths
	//
	// a code in representation (2) is called "normalized" here
	// The BitReverse() function is used to convert between (1) and (2)
	// The NormalizeCode() function is used to convert from (3) to (2)

	if (nCodes == 0)
		throw Err("null code");

	m_maxCodeBits = *std::max_element(codeBits, codeBits+nCodes);

	if (m_maxCodeBits > MAX_CODE_BITS)
		throw Err("code length exceeds maximum");

	if (m_maxCodeBits == 0)
		throw Err("null code");

	// count number of codes of each length
	SecBlockWithHint<unsigned int, 15+1> blCount(m_maxCodeBits+1);
	std::fill(blCount.begin(), blCount.end(), 0);
	unsigned int i;
	for (i=0; i<nCodes; i++)
		blCount[codeBits[i]]++;

	// compute the starting code of each length
	code_t code = 0;
	SecBlockWithHint<code_t, 15+1> nextCode(m_maxCodeBits+1);
	nextCode[1] = 0;
	for (i=2; i<=m_maxCodeBits; i++)
	{
		// compute this while checking for overflow: code = (code + blCount[i-1]) << 1
		if (code > code + blCount[i-1])
			throw Err("codes oversubscribed");
		code += blCount[i-1];
		if (code > (code << 1))
			throw Err("codes oversubscribed");
		code <<= 1;
		nextCode[i] = code;
	}

	if (code > (1 << m_maxCodeBits) - blCount[m_maxCodeBits])
		throw Err("codes oversubscribed");
	else if (m_maxCodeBits != 1 && code < (1 << m_maxCodeBits) - blCount[m_maxCodeBits])
		throw Err("codes incomplete");

	// compute a vector of <code, length, value> triples sorted by code
	m_codeToValue.resize(nCodes - blCount[0]);
	unsigned int j=0;
	for (i=0; i<nCodes; i++) 
	{
		unsigned int len = codeBits[i];
		if (len != 0)
		{
			code = NormalizeCode(nextCode[len]++, len);
			m_codeToValue[j].code = code;
			m_codeToValue[j].len = len;
			m_codeToValue[j].value = i;
			j++;
		}
	}
	std::sort(m_codeToValue.begin(), m_codeToValue.end());

	// initialize the decoding cache
	m_cacheBits = STDMIN(9U, m_maxCodeBits);
	m_cacheMask = (1 << m_cacheBits) - 1;
	m_normalizedCacheMask = NormalizeCode(m_cacheMask, m_cacheBits);
	assert(m_normalizedCacheMask == BitReverse(m_cacheMask));

	if (m_cache.size() != size_t(1) << m_cacheBits)
		m_cache.resize(1 << m_cacheBits);

	for (i=0; i<m_cache.size(); i++)
		m_cache[i].type = 0;
}

void HuffmanDecoder::FillCacheEntry(LookupEntry &entry, code_t normalizedCode) const
{
	normalizedCode &= m_normalizedCacheMask;
	const CodeInfo &codeInfo = *(std::upper_bound(m_codeToValue.begin(), m_codeToValue.end(), normalizedCode, CodeLessThan())-1);
	if (codeInfo.len <= m_cacheBits)
	{
		entry.type = 1;
		entry.value = codeInfo.value;
		entry.len = codeInfo.len;
	}
	else
	{
		entry.begin = &codeInfo;
		const CodeInfo *last = & *(std::upper_bound(m_codeToValue.begin(), m_codeToValue.end(), normalizedCode + ~m_normalizedCacheMask, CodeLessThan())-1);
		if (codeInfo.len == last->len)
		{
			entry.type = 2;
			entry.len = codeInfo.len;
		}
		else
		{
			entry.type = 3;
			entry.end = last+1;
		}
	}
}

inline unsigned int HuffmanDecoder::Decode(code_t code, /* out */ value_t &value) const
{
	assert(m_codeToValue.size() > 0);
	LookupEntry &entry = m_cache[code & m_cacheMask];

	code_t normalizedCode;
	if (entry.type != 1)
		normalizedCode = BitReverse(code);

	if (entry.type == 0)
		FillCacheEntry(entry, normalizedCode);

	if (entry.type == 1)
	{
		value = entry.value;
		return entry.len;
	}
	else
	{
		const CodeInfo &codeInfo = (entry.type == 2)
			? entry.begin[(normalizedCode << m_cacheBits) >> (MAX_CODE_BITS - (entry.len - m_cacheBits))]
			: *(std::upper_bound(entry.begin, entry.end, normalizedCode, CodeLessThan())-1);
		value = codeInfo.value;
		return codeInfo.len;
	}
}

bool HuffmanDecoder::Decode(LowFirstBitReader &reader, value_t &value) const
{
	reader.FillBuffer(m_maxCodeBits);
	unsigned int codeBits = Decode(reader.PeekBuffer(), value);
	if (codeBits > reader.BitsBuffered())
		return false;
	reader.SkipBits(codeBits);
	return true;
}

// *************************************************************

Inflator::Inflator(BufferedTransformation *attachment, bool repeat, int propagation)
	: AutoSignaling<Filter>(propagation)
	, m_state(PRE_STREAM), m_repeat(repeat), m_reader(m_inQueue)
{
	Detach(attachment);
}

void Inflator::IsolatedInitialize(const NameValuePairs &parameters)
{
	m_state = PRE_STREAM;
	parameters.GetValue("Repeat", m_repeat);
	m_inQueue.Clear();
	m_reader.SkipBits(m_reader.BitsBuffered());
}

void Inflator::OutputByte(byte b)
{
	m_window[m_current++] = b;
	if (m_current == m_window.size())
	{
		ProcessDecompressedData(m_window + m_lastFlush, m_window.size() - m_lastFlush);
		m_lastFlush = 0;
		m_current = 0;
		m_wrappedAround = true;
	}
}

void Inflator::OutputString(const byte *string, size_t length)
{
	while (length)
	{
		size_t len = UnsignedMin(length, m_window.size() - m_current);
		memcpy(m_window + m_current, string, len);
		m_current += len;
		if (m_current == m_window.size())
		{
			ProcessDecompressedData(m_window + m_lastFlush, m_window.size() - m_lastFlush);
			m_lastFlush = 0;
			m_current = 0;
			m_wrappedAround = true;
		}
		string += len;
		length -= len;
	}		
}

void Inflator::OutputPast(unsigned int length, unsigned int distance)
{
	size_t start;
	if (distance <= m_current)
		start = m_current - distance;
	else if (m_wrappedAround && distance <= m_window.size())
		start = m_current + m_window.size() - distance;
	else
		throw BadBlockErr();

	if (start + length > m_window.size())
	{
		for (; start < m_window.size(); start++, length--)
			OutputByte(m_window[start]);
		start = 0;
	}

	if (start + length > m_current || m_current + length >= m_window.size())
	{
		while (length--)
			OutputByte(m_window[start++]);
	}
	else
	{
		memcpy(m_window + m_current, m_window + start, length);
		m_current += length;
	}
}

size_t Inflator::Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
	if (!blocking)
		throw BlockingInputOnly("Inflator");

	LazyPutter lp(m_inQueue, inString, length);
	ProcessInput(messageEnd != 0);

	if (messageEnd)
		if (!(m_state == PRE_STREAM || m_state == AFTER_END))
			throw UnexpectedEndErr();

	Output(0, NULL, 0, messageEnd, blocking);
	return 0;
}

bool Inflator::IsolatedFlush(bool hardFlush, bool blocking)
{
	if (!blocking)
		throw BlockingInputOnly("Inflator");

	if (hardFlush)
		ProcessInput(true);
	FlushOutput();

	return false;
}

void Inflator::ProcessInput(bool flush)
{
	while (true)
	{
		switch (m_state)
		{
		case PRE_STREAM:
			if (!flush && m_inQueue.CurrentSize() < MaxPrestreamHeaderSize())
				return;
			ProcessPrestreamHeader();
			m_state = WAIT_HEADER;
			m_wrappedAround = false;
			m_current = 0;
			m_lastFlush = 0;
			m_window.New(1 << GetLog2WindowSize());
			break;
		case WAIT_HEADER:
			{
			// maximum number of bytes before actual compressed data starts
			const size_t MAX_HEADER_SIZE = BitsToBytes(3+5+5+4+19*7+286*15+19*15);
			if (m_inQueue.CurrentSize() < (flush ? 1 : MAX_HEADER_SIZE))
				return;
			DecodeHeader();
			break;
			}
		case DECODING_BODY:
			if (!DecodeBody())
				return;
			break;
		case POST_STREAM:
			if (!flush && m_inQueue.CurrentSize() < MaxPoststreamTailSize())
				return;
			ProcessPoststreamTail();
			m_state = m_repeat ? PRE_STREAM : AFTER_END;
			Output(0, NULL, 0, GetAutoSignalPropagation(), true);	// TODO: non-blocking
			if (m_inQueue.IsEmpty())
				return;
			break;
		case AFTER_END:
			m_inQueue.TransferTo(*AttachedTransformation());
			return;
		}
	}
}

void Inflator::DecodeHeader()
{
	if (!m_reader.FillBuffer(3))
		throw UnexpectedEndErr();
	m_eof = m_reader.GetBits(1) != 0;
	m_blockType = (byte)m_reader.GetBits(2);
	switch (m_blockType)
	{
	case 0:	// stored
		{
		m_reader.SkipBits(m_reader.BitsBuffered() % 8);
		if (!m_reader.FillBuffer(32))
			throw UnexpectedEndErr();
		m_storedLen = (word16)m_reader.GetBits(16);
		word16 nlen = (word16)m_reader.GetBits(16);
		if (nlen != (word16)~m_storedLen)
			throw BadBlockErr();
		break;
		}
	case 1:	// fixed codes
		m_nextDecode = LITERAL;
		break;
	case 2:	// dynamic codes
		{
		if (!m_reader.FillBuffer(5+5+4))
			throw UnexpectedEndErr();
		unsigned int hlit = m_reader.GetBits(5);
		unsigned int hdist = m_reader.GetBits(5);
		unsigned int hclen = m_reader.GetBits(4);

		FixedSizeSecBlock<unsigned int, 286+32> codeLengths;
		unsigned int i;
		static const unsigned int border[] = {    // Order of the bit length code lengths
			16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
		std::fill(codeLengths.begin(), codeLengths+19, 0);
		for (i=0; i<hclen+4; i++)
			codeLengths[border[i]] = m_reader.GetBits(3);

		try
		{
			HuffmanDecoder codeLengthDecoder(codeLengths, 19);
			for (i = 0; i < hlit+257+hdist+1; )
			{
				unsigned int k, count, repeater;
				bool result = codeLengthDecoder.Decode(m_reader, k);
				if (!result)
					throw UnexpectedEndErr();
				if (k <= 15)
				{
					count = 1;
					repeater = k;
				}
				else switch (k)
				{
				case 16:
					if (!m_reader.FillBuffer(2))
						throw UnexpectedEndErr();
					count = 3 + m_reader.GetBits(2);
					if (i == 0)
						throw BadBlockErr();
					repeater = codeLengths[i-1];
					break;
				case 17:
					if (!m_reader.FillBuffer(3))
						throw UnexpectedEndErr();
					count = 3 + m_reader.GetBits(3);
					repeater = 0;
					break;
				case 18:
					if (!m_reader.FillBuffer(7))
						throw UnexpectedEndErr();
					count = 11 + m_reader.GetBits(7);
					repeater = 0;
					break;
				}
				if (i + count > hlit+257+hdist+1)
					throw BadBlockErr();
				std::fill(codeLengths + i, codeLengths + i + count, repeater);
				i += count;
			}
			m_dynamicLiteralDecoder.Initialize(codeLengths, hlit+257);
			if (hdist == 0 && codeLengths[hlit+257] == 0)
			{
				if (hlit != 0)	// a single zero distance code length means all literals
					throw BadBlockErr();
			}
			else
				m_dynamicDistanceDecoder.Initialize(codeLengths+hlit+257, hdist+1);
			m_nextDecode = LITERAL;
		}
		catch (HuffmanDecoder::Err &)
		{
			throw BadBlockErr();
		}
		break;
		}
	default:
		throw BadBlockErr();	// reserved block type
	}
	m_state = DECODING_BODY;
}

bool Inflator::DecodeBody()
{
	bool blockEnd = false;
	switch (m_blockType)
	{
	case 0:	// stored
		assert(m_reader.BitsBuffered() == 0);
		while (!m_inQueue.IsEmpty() && !blockEnd)
		{
			size_t size;
			const byte *block = m_inQueue.Spy(size);
			size = UnsignedMin(m_storedLen, size);
			OutputString(block, size);
			m_inQueue.Skip(size);
			m_storedLen -= (word16)size;
			if (m_storedLen == 0)
				blockEnd = true;
		}
		break;
	case 1:	// fixed codes
	case 2:	// dynamic codes
		static const unsigned int lengthStarts[] = {
			3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
			35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258};
		static const unsigned int lengthExtraBits[] = {
			0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
			3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};
		static const unsigned int distanceStarts[] = {
			1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
			257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
			8193, 12289, 16385, 24577};
		static const unsigned int distanceExtraBits[] = {
			0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
			7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
			12, 12, 13, 13};

		const HuffmanDecoder& literalDecoder = GetLiteralDecoder();
		const HuffmanDecoder& distanceDecoder = GetDistanceDecoder();

		switch (m_nextDecode)
		{
		case LITERAL:
			while (true)
			{
				if (!literalDecoder.Decode(m_reader, m_literal))
				{
					m_nextDecode = LITERAL;
					break;
				}
				if (m_literal < 256)
					OutputByte((byte)m_literal);
				else if (m_literal == 256)	// end of block
				{
					blockEnd = true;
					break;
				}
				else
				{
					if (m_literal > 285)
						throw BadBlockErr();
					unsigned int bits;
		case LENGTH_BITS:
					bits = lengthExtraBits[m_literal-257];
					if (!m_reader.FillBuffer(bits))
					{
						m_nextDecode = LENGTH_BITS;
						break;
					}
					m_literal = m_reader.GetBits(bits) + lengthStarts[m_literal-257];
		case DISTANCE:
					if (!distanceDecoder.Decode(m_reader, m_distance))
					{
						m_nextDecode = DISTANCE;
						break;
					}
		case DISTANCE_BITS:
					bits = distanceExtraBits[m_distance];
					if (!m_reader.FillBuffer(bits))
					{
						m_nextDecode = DISTANCE_BITS;
						break;
					}
					m_distance = m_reader.GetBits(bits) + distanceStarts[m_distance];
					OutputPast(m_literal, m_distance);
				}
			}
		}
	}
	if (blockEnd)
	{
		if (m_eof)
		{
			FlushOutput();
			m_reader.SkipBits(m_reader.BitsBuffered()%8);
			if (m_reader.BitsBuffered())
			{
				// undo too much lookahead
				SecBlockWithHint<byte, 4> buffer(m_reader.BitsBuffered() / 8);
				for (unsigned int i=0; i<buffer.size(); i++)
					buffer[i] = (byte)m_reader.GetBits(8);
				m_inQueue.Unget(buffer, buffer.size());
			}
			m_state = POST_STREAM;
		}
		else
			m_state = WAIT_HEADER;
	}
	return blockEnd;
}

void Inflator::FlushOutput()
{
	if (m_state != PRE_STREAM)
	{
		assert(m_current >= m_lastFlush);
		ProcessDecompressedData(m_window + m_lastFlush, m_current - m_lastFlush);
		m_lastFlush = m_current;
	}
}

struct NewFixedLiteralDecoder
{
	HuffmanDecoder * operator()() const
	{
		unsigned int codeLengths[288];
		std::fill(codeLengths + 0, codeLengths + 144, 8);
		std::fill(codeLengths + 144, codeLengths + 256, 9);
		std::fill(codeLengths + 256, codeLengths + 280, 7);
		std::fill(codeLengths + 280, codeLengths + 288, 8);
		std::auto_ptr<HuffmanDecoder> pDecoder(new HuffmanDecoder);
		pDecoder->Initialize(codeLengths, 288);
		return pDecoder.release();
	}
};

struct NewFixedDistanceDecoder
{
	HuffmanDecoder * operator()() const
	{
		unsigned int codeLengths[32];
		std::fill(codeLengths + 0, codeLengths + 32, 5);
		std::auto_ptr<HuffmanDecoder> pDecoder(new HuffmanDecoder);
		pDecoder->Initialize(codeLengths, 32);
		return pDecoder.release();
	}
};

const HuffmanDecoder& Inflator::GetLiteralDecoder() const
{
	return m_blockType == 1 ? Singleton<HuffmanDecoder, NewFixedLiteralDecoder>().Ref() : m_dynamicLiteralDecoder;
}

const HuffmanDecoder& Inflator::GetDistanceDecoder() const
{
	return m_blockType == 1 ? Singleton<HuffmanDecoder, NewFixedDistanceDecoder>().Ref() : m_dynamicDistanceDecoder;
}

NAMESPACE_END