|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
// xtrcrypt.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "xtrcrypt.h"
#include "nbtheory.h"
#include "asn.h"
#include "argnames.h"
NAMESPACE_BEGIN(CryptoPP)
XTR_DH::XTR_DH(const Integer &p, const Integer &q, const GFP2Element &g)
: m_p(p), m_q(q), m_g(g)
{
}
XTR_DH::XTR_DH(RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
{
XTR_FindPrimesAndGenerator(rng, m_p, m_q, m_g, pbits, qbits);
}
XTR_DH::XTR_DH(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_p.BERDecode(seq);
m_q.BERDecode(seq);
m_g.c1.BERDecode(seq);
m_g.c2.BERDecode(seq);
seq.MessageEnd();
}
void XTR_DH::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_p.DEREncode(seq);
m_q.DEREncode(seq);
m_g.c1.DEREncode(seq);
m_g.c2.DEREncode(seq);
seq.MessageEnd();
}
bool XTR_DH::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
bool pass = true;
pass = pass && m_p > Integer::One() && m_p.IsOdd();
pass = pass && m_q > Integer::One() && m_q.IsOdd();
GFP2Element three = GFP2_ONB<ModularArithmetic>(m_p).ConvertIn(3);
pass = pass && !(m_g.c1.IsNegative() || m_g.c2.IsNegative() || m_g.c1 >= m_p || m_g.c2 >= m_p || m_g == three);
if (level >= 1)
pass = pass && ((m_p.Squared()-m_p+1)%m_q).IsZero();
if (level >= 2)
{
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
pass = pass && XTR_Exponentiate(m_g, (m_p.Squared()-m_p+1)/m_q, m_p) != three;
pass = pass && XTR_Exponentiate(m_g, m_q, m_p) == three;
}
return pass;
}
bool XTR_DH::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
CRYPTOPP_GET_FUNCTION_ENTRY(SubgroupOrder)
CRYPTOPP_GET_FUNCTION_ENTRY(SubgroupGenerator)
;
}
void XTR_DH::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
CRYPTOPP_SET_FUNCTION_ENTRY(SubgroupOrder)
CRYPTOPP_SET_FUNCTION_ENTRY(SubgroupGenerator)
;
}
void XTR_DH::GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
Integer x(rng, Integer::Zero(), m_q-1);
x.Encode(privateKey, PrivateKeyLength());
}
void XTR_DH::GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
Integer x(privateKey, PrivateKeyLength());
GFP2Element y = XTR_Exponentiate(m_g, x, m_p);
y.Encode(publicKey, PublicKeyLength());
}
bool XTR_DH::Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey) const
{
GFP2Element w(otherPublicKey, PublicKeyLength());
if (validateOtherPublicKey)
{
GFP2_ONB<ModularArithmetic> gfp2(m_p);
GFP2Element three = gfp2.ConvertIn(3);
if (w.c1.IsNegative() || w.c2.IsNegative() || w.c1 >= m_p || w.c2 >= m_p || w == three)
return false;
if (XTR_Exponentiate(w, m_q, m_p) != three)
return false;
}
Integer s(privateKey, PrivateKeyLength());
GFP2Element z = XTR_Exponentiate(w, s, m_p);
z.Encode(agreedValue, AgreedValueLength());
return true;
}
NAMESPACE_END
|