|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
GetAttacksEvolution <- function(Attacks){
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year)
attacks.evol <- as.data.frame(table(attacks.evol$Year))
colnames(attacks.evol) <- c("Year","Attacks")
graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = 1,
xlab = "Years",
ylab = "Attacks",
data = attacks.evol,
geom = "line") +
geom_point() +
geom_label(aes(label=attacks.evol$Attacks),
vjust=c(1.5, 0, 0, -0.5, -0.5),
hjust=c(0.5, -0.5, 1.5, 0, 0))+
theme(plot.title = element_text(hjust = 0.5))
graph1
}
GetCertsEvolution <- function(Certs){
Certs.evol <- data.frame(Year = c(2011, 2012, 2013, 2014, 2015),
Certs = c(sum(Certs$X2011),
sum(Certs$X2012),
sum(Certs$X2013),
sum(Certs$X2014),
sum(Certs$X2015)))
graph1 <- ggplot2::qplot(main = "ISO 27001 evolution",
x = Certs.evol$Year,
y = Certs.evol$Certs,
group = 1,
xlab = "Years",
ylab = "Certifications",
data = Certs.evol,
geom = "line") +
geom_point() +
geom_label(aes(label=Certs.evol$Certs),
vjust=c(0.2, -0.7, 0, 0, 0.5),
hjust=c(-0.6, 1, 1.2, 1.2, 1.2))+
theme(plot.title = element_text(hjust = 0.5))
graph1
}
GetAttacksMonthEvolution <- function(Attacks){
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y-%m")) %>% group_by(Year)
attacks.evol <- as.data.frame(table(attacks.evol$Year))
colnames(attacks.evol) <- c("Year","Attacks")
graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = 1,
xlab = "Months",
ylab = "Attacks",
data = attacks.evol,
geom = "line") +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
geom_smooth(method = 'loess') +
scale_x_discrete(labels = c("2012", "", "", "", "", "", "", "", "", "", "", "",
"2013", "", "", "", "", "", "", "", "", "", "", "",
"2014", "", "", "", "", "", "", "", "", "", "", "",
"2015", "", "", "", "", "", "", "", "", "", "", "",
"2016", "", "", "", "", "", "", "", "", "", "", ""))
graph1
}
|
|
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
GetAttackTypePie <- function (Attacks){
attack.pie <- group_by(Attacks, Attack.standar)
attack.pie <- as.data.frame(table(attack.pie$Attack.standar))
attack.pie <- setNames(attack.pie, c("Attack", "Count"))
attack.pie <- attack.pie[attack.pie$Attack != "",]
attack.pie <- attack.pie[attack.pie$Count > (sum(attack.pie$Count) * 0.01),]
graph1 <- ggplot(data=attack.pie,
aes(x=factor(1),
y=Count,
fill=Attack)) +
geom_col(width = 1, color='black') +
# geom_label(aes(label=paste( round(x = 100 - (sum(attack.pie$Count) / attack.pie$Count), digits = 2), "%")),
# vjust=c(0),
# hjust=c(0)) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("Attack type pie")
graph1
}
GetAttackTypeEvolution <- function(Attacks){
Attacks.pre <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Attack.standar)
Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
Attacks.pre <- Attacks.pre[Attacks.pre$Attack != "",]
Attacks.pre <- plyr::arrange(Attacks.pre, Year, Attack)
b <- as.character(sort(unique(Attacks.pre$Attack)))
Attacks.desg <- data.frame(Year = sort(unique(Attacks.pre$Year)))
for (i in 1:length(b)) {
Attacks.desg <- cbind(Attacks.desg, Attacks.pre[Attacks.pre$Attack == b[i],3])
}
Attacks.desg <- setNames(Attacks.desg, c("Year", gsub(" ", ".", b)))
Attacks.desg <- select(Attacks.desg, Year, `Account.Hijacking`, `DDoS`, `Defacement`, `DNS`, `Injection`, `Malware`)
graph1 <- ggplot(data = Attacks.desg,
aes_string(x = colnames(Attacks.desg)[1]))
graph1 <- graph1 +
#geom_line(aes(y = Zero.day, group = 1, colour = "Zero.day")) +
#geom_point(aes(y = Zero.day, group = 1, colour = "Zero.day")) +
geom_line(aes(y = `Account.Hijacking`, group = 1, colour = "Account.Hijacking")) +
geom_point(aes(y = `Account.Hijacking`, group = 1, colour = "Account.Hijacking")) +
geom_line(aes(y = `DDoS`, group = 1, colour = "DDoS")) +
geom_point(aes(y = `DDoS`, group = 1, colour = "DDoS")) +
geom_line(aes(y = `Defacement`, group = 1, colour = "Defacement")) +
geom_point(aes(y = `Defacement`, group = 1, colour = "Defacement")) +
geom_line(aes(y = `DNS`, group = 1, colour = "DNS")) +
geom_point(aes(y = `DNS`, group = 1, colour = "DNS")) +
geom_line(aes(y = `Injection`, group = 1, colour = "Injection")) +
geom_point(aes(y = `Injection`, group = 1, colour = "Injection")) +
geom_line(aes(y = `Malware`, group = 1, colour = "Malware")) +
geom_point(aes(y = `Malware`, group = 1, colour = "Malware")) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Attack type evolution") +
labs(colour = "Attack type") + xlab("Years") + ylab("Attacks")
graph1
}
GetAttackTypeTopEvolution <- function(Attacks){
Attacks.pre <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Attack.standar)
Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
Attacks.pre <- Attacks.pre[Attacks.pre$Attack != "",]
Attacks.pre <- plyr::arrange(Attacks.pre, Year, Attack)
b <- as.character(sort(unique(Attacks.pre$Attack)))
Attacks.desg <- data.frame(Year = sort(unique(Attacks.pre$Year)))
for (i in 1:length(b)) {
Attacks.desg <- cbind(Attacks.desg, Attacks.pre[Attacks.pre$Attack == b[i],3])
}
Attacks.desg <- setNames(Attacks.desg, c("Year", b))
Attacks.desg <- select(Attacks.desg, Year, `Account Hijacking`, `DDoS`, `Defacement`, `DNS`, `Injection`, `Malware`)
graph1 <- ggplot(data = Attacks.desg,
aes(x = Year, y = `DDoS`, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("DDoS") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph2 <- ggplot(data = Attacks.desg,
aes(x = Year, y = `Defacement`, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Defacement") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph3 <- ggplot(data = Attacks.desg,
aes(x = Year, y = `Injection`, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Injection") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph4 <- ggplot(data = Attacks.desg,
aes(x = Year, y = `Account Hijacking`, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Account Hijacking") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph5 <- ggplot(data = Attacks.desg,
aes(x = Year, y = `Malware`, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Malware") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph6 <- ggplot(data = Attacks.desg,
aes(x = Year, y = `DNS`, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("DNS") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
list(graph1, graph2, graph3, graph4, graph5, graph6)
}
|
|
256
257
|
|
|
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
GetBaseCertsGraph <- function(Cert_PerCountry, year){
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
x = reorder(country_short,X2012),
y = X2012,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
geom = "col",
fill = Continent)
graph1
}
|
|
273
274
275
276
277
278
279
280
|
#' Return every graph used in the report file
#'
#' @param Cert_PerCountry data.frame with the processed data of ISO 27001 certifications
#' @param Attacks data.frame with the processed data of cyberattacks
#'
#' @return data.frame
#' @export
GetReportGraphs <- function(Cert_PerCountry,Attacks) {
|
|
281
|
#2012
|
|
282
|
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
|
|
283
284
|
x = reorder(country_short,X2012),
y = X2012,
|
|
285
286
|
xlab = "Country",
ylab = "Number of certifications",
|
|
287
288
289
290
|
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
geom = "col",
fill = Continent)
|
|
291
292
293
|
attacks2k12 <- Attacks[Attacks$Date < "2013-01-01" & Attacks$Date >= "2012-01-01",]
frameAttacks2k12 <- as.data.frame(table(attacks2k12$Country))
colnames(frameAttacks2k12) <- c("Country","Attacks")
|
|
294
|
graph2 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2012)",
|
|
295
296
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
297
298
|
xlab = "Country",
ylab = "Number of attacks",
|
|
299
300
301
|
data = frameAttacks2k12[frameAttacks2k12$Attacks > mean(frameAttacks2k12$Attacks),],
geom = "col",
fill = Continent)
|
|
302
303
304
305
|
Attacks2012ByMonth <- mutate(attacks2k12, month = format(attacks2k12$Date, "%m")) %>% group_by(month)
Attack2012FreqByMonth <- as.data.frame(table(Attacks2012ByMonth$month))
colnames(Attack2012FreqByMonth) <- c("Month", "Attacks")
|
|
306
307
|
graph3 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
308
309
310
311
|
main = "Global cyberattack progression by month (2012)",
data = Attack2012FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
312
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
313
314
|
#2013
|
|
315
|
graph4 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2013)",
|
|
316
317
|
x = reorder(country_short,X2013),
y = X2013,
|
|
318
319
|
xlab = "Country",
ylab = "Number of certifications",
|
|
320
321
322
|
data = Cert_PerCountry[Cert_PerCountry$X2013 > mean(Cert_PerCountry$X2013),]
, geom = "col",
fill = Continent)
|
|
323
324
325
|
attacks2k13 <- Attacks[Attacks$Date < "2014-01-01" & Attacks$Date >= "2013-01-01",]
frameAttacks2k13 <- as.data.frame(table(attacks2k13$Country))
colnames(frameAttacks2k13) <- c("Country","Attacks")
|
|
326
|
graph5 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2013)",
|
|
327
328
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
329
330
|
xlab = "Country",
ylab = "Number of attacks",
|
|
331
332
333
|
data = frameAttacks2k13[frameAttacks2k13$Attacks > mean(frameAttacks2k13$Attacks),]
, geom = "col",
fill = Continent)
|
|
334
335
336
337
|
Attacks2013ByMonth <- mutate(attacks2k13, month = format(attacks2k13$Date, "%m")) %>% group_by(month)
Attack2013FreqByMonth <- as.data.frame(table(Attacks2013ByMonth$month))
colnames(Attack2013FreqByMonth) <- c("Month", "Attacks")
|
|
338
339
|
graph6 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
340
341
342
343
|
main = "Global cyberattack progression by month (2013)",
data = Attack2013FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
344
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
345
346
|
#2014
|
|
347
|
graph7 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2014)",
|
|
348
349
|
x = reorder(country_short,X2014),
y = X2014,
|
|
350
351
|
xlab = "Country",
ylab = "Number of certifications",
|
|
352
353
354
|
data = Cert_PerCountry[Cert_PerCountry$X2014 > mean(Cert_PerCountry$X2014),]
, geom = "col",
fill = Continent)
|
|
355
356
357
|
attacks2k14 <- Attacks[Attacks$Date < "2015-01-01" & Attacks$Date >= "2014-01-01",]
frameAttacks2k14 <- as.data.frame(table(attacks2k14$Country))
colnames(frameAttacks2k14) <- c("Country","Attacks")
|
|
358
|
graph8 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2014)",
|
|
359
360
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
361
362
|
xlab = "Country",
ylab = "Number of attacks",
|
|
363
364
365
|
data = frameAttacks2k14[frameAttacks2k14$Attacks > mean(frameAttacks2k14$Attacks),]
, geom = "col",
fill = Continent)
|
|
366
367
368
369
|
Attacks2014ByMonth <- mutate(attacks2k14, month = format(attacks2k14$Date, "%m")) %>% group_by(month)
Attack2014FreqByMonth <- as.data.frame(table(Attacks2014ByMonth$month))
colnames(Attack2014FreqByMonth) <- c("Month", "Attacks")
|
|
370
371
|
graph9 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
372
373
374
375
|
main = "Global cyberattack progression by month (2014)",
data = Attack2014FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
376
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
377
378
|
#2015
|
|
379
|
graph10 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2015)",
|
|
380
381
|
x = reorder(country_short,X2015),
y = X2015,
|
|
382
383
|
xlab = "Country",
ylab = "Number of certifications",
|
|
384
385
386
|
data = Cert_PerCountry[Cert_PerCountry$X2015 > mean(Cert_PerCountry$X2015),]
, geom = "col",
fill = Continent)
|
|
387
388
389
|
attacks2k15 <- Attacks[Attacks$Date < "2016-01-01" & Attacks$Date >= "2015-01-01",]
frameAttacks2k15 <- as.data.frame(table(attacks2k15$Country))
colnames(frameAttacks2k15) <- c("Country","Attacks")
|
|
390
|
graph11 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2015)",
|
|
391
392
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
393
394
|
xlab = "Country",
ylab = "Number of attacks",
|
|
395
396
397
|
data = frameAttacks2k15[frameAttacks2k15$Attacks > mean(frameAttacks2k15$Attacks),]
, geom = "col",
fill = Continent)
|
|
398
399
400
401
|
Attacks2015ByMonth <- mutate(attacks2k15, month = format(attacks2k15$Date, "%m")) %>% group_by(month)
Attack2015FreqByMonth <- as.data.frame(table(Attacks2015ByMonth$month))
colnames(Attack2015FreqByMonth) <- c("Month", "Attacks")
|
|
402
|
graph12 <- ggplot2::qplot(x = as.numeric(Month),
|
|
403
404
405
406
407
|
y = Attacks,
main = "Global cyberattack progression by month (2015)",
data = Attack2015FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
408
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
409
410
411
412
413
414
|
list(graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9,graph10,graph11,graph12)
}
|