Blame view

ISO27001effectiveness/R/ReportGraphs.R 16.3 KB
Miguel Tuñón authored
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
GetAttacksEvolution <- function(Attacks){

  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year)
  attacks.evol <- as.data.frame(table(attacks.evol$Year))
  colnames(attacks.evol) <- c("Year","Attacks")

  graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
                           x = attacks.evol$Year,
                           y = attacks.evol$Attacks,
                           group = 1,
                           xlab = "Years",
                           ylab = "Attacks",
                           data = attacks.evol,
                           geom = "line")  +
            geom_point() +
            geom_label(aes(label=attacks.evol$Attacks),
                       vjust=c(1.5, 0, 0, -0.5, -0.5),
                       hjust=c(0.5, -0.5, 1.5, 0, 0))+
            theme(plot.title = element_text(hjust = 0.5))

  graph1

}

GetCertsEvolution <- function(Certs){

  Certs.evol <- data.frame(Year = c(2011, 2012, 2013, 2014, 2015),
                  Certs = c(sum(Certs$X2011),
                            sum(Certs$X2012),
                            sum(Certs$X2013),
                            sum(Certs$X2014),
                            sum(Certs$X2015)))

  graph1 <- ggplot2::qplot(main = "ISO 27001 evolution",
                           x = Certs.evol$Year,
                           y = Certs.evol$Certs,
                           group = 1,
                           xlab = "Years",
                           ylab = "Certifications",
                           data = Certs.evol,
                          geom = "line") +
            geom_point() +
            geom_label(aes(label=Certs.evol$Certs),
                       vjust=c(0.2, -0.7, 0, 0, 0.5),
                       hjust=c(-0.6, 1, 1.2, 1.2, 1.2))+
            theme(plot.title = element_text(hjust = 0.5))

  graph1

}


GetAttacksMonthEvolution <- function(Attacks){

  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y-%m")) %>% group_by(Year)
  attacks.evol <- as.data.frame(table(attacks.evol$Year))
  colnames(attacks.evol) <- c("Year","Attacks")

  graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
                           x = attacks.evol$Year,
                           y = attacks.evol$Attacks,
                           group = 1,
                           xlab = "Months",
                           ylab = "Attacks",
                           data = attacks.evol,
                           geom = "line")  +
    geom_point() +
    theme(plot.title = element_text(hjust = 0.5)) +
    geom_smooth(method = 'loess') +
    scale_x_discrete(labels = c("2012", "", "", "", "", "", "", "", "", "", "", "",
                                "2013", "", "", "", "", "", "", "", "", "", "", "",
                                "2014", "", "", "", "", "", "", "", "", "", "", "",
                                "2015", "", "", "", "", "", "", "", "", "", "", "",
                                "2016", "", "", "", "", "", "", "", "", "", "", ""))

  graph1

}
Miguel Tuñón authored
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
GetAttackTypePie <- function (Attacks){

  attack.pie <- group_by(Attacks, Attack.standar)
  attack.pie <- as.data.frame(table(attack.pie$Attack.standar))
  attack.pie <- setNames(attack.pie, c("Attack", "Count"))

  attack.pie <- attack.pie[attack.pie$Attack != "",]
  attack.pie <- attack.pie[attack.pie$Count > (sum(attack.pie$Count) * 0.01),]

  graph1 <- ggplot(data=attack.pie,
         aes(x=factor(1),
             y=Count,
             fill=Attack)) +
    geom_col(width = 1, color='black') +
#    geom_label(aes(label=paste( round(x = 100 - (sum(attack.pie$Count) / attack.pie$Count), digits = 2), "%")),
#               vjust=c(0),
#               hjust=c(0)) +
    coord_polar(theta="y") +
    scale_x_discrete(labels = c("")) +
    scale_y_discrete(labels = c("")) +
    theme(plot.title = element_text(hjust = 0.5),
          axis.title.x=element_blank(),
          axis.title.y=element_blank()) +
    ggtitle("Attack type pie")

  graph1
}

GetAttackTypeEvolution <- function(Attacks){
  Attacks.pre <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Attack.standar)
  Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
  Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
  Attacks.pre <- Attacks.pre[Attacks.pre$Attack != "",]
  Attacks.pre <- plyr::arrange(Attacks.pre, Year, Attack)


  b <- as.character(sort(unique(Attacks.pre$Attack)))

  Attacks.desg <- data.frame(Year = sort(unique(Attacks.pre$Year)))

  for (i in 1:length(b)) {
    Attacks.desg <- cbind(Attacks.desg, Attacks.pre[Attacks.pre$Attack == b[i],3])
  }

  Attacks.desg <- setNames(Attacks.desg, c("Year", gsub(" ", ".", b)))

  Attacks.desg <- select(Attacks.desg, Year, `Account.Hijacking`, `DDoS`, `Defacement`, `DNS`, `Injection`, `Malware`)

  graph1 <- ggplot(data = Attacks.desg,
                   aes_string(x = colnames(Attacks.desg)[1]))

  graph1 <- graph1 +

    #geom_line(aes(y = Zero.day, group = 1, colour = "Zero.day")) +
    #geom_point(aes(y = Zero.day, group = 1, colour = "Zero.day")) +

    geom_line(aes(y = `Account.Hijacking`, group = 1, colour = "Account.Hijacking")) +
    geom_point(aes(y = `Account.Hijacking`, group = 1, colour = "Account.Hijacking")) +

    geom_line(aes(y = `DDoS`, group = 1, colour = "DDoS")) +
    geom_point(aes(y = `DDoS`, group = 1, colour = "DDoS")) +

    geom_line(aes(y = `Defacement`, group = 1, colour = "Defacement")) +
    geom_point(aes(y = `Defacement`, group = 1, colour = "Defacement")) +

    geom_line(aes(y = `DNS`, group = 1, colour = "DNS")) +
    geom_point(aes(y = `DNS`, group = 1, colour = "DNS")) +

    geom_line(aes(y = `Injection`, group = 1, colour = "Injection")) +
    geom_point(aes(y = `Injection`, group = 1, colour = "Injection")) +

    geom_line(aes(y = `Malware`, group = 1, colour = "Malware")) +
    geom_point(aes(y = `Malware`, group = 1, colour = "Malware")) +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Attack type evolution") +
    labs(colour = "Attack type") + xlab("Years") + ylab("Attacks")

  graph1

  }


GetAttackTypeTopEvolution <- function(Attacks){
  Attacks.pre <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Attack.standar)
  Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
  Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
  Attacks.pre <- Attacks.pre[Attacks.pre$Attack != "",]
  Attacks.pre <- plyr::arrange(Attacks.pre, Year, Attack)

  b <- as.character(sort(unique(Attacks.pre$Attack)))

  Attacks.desg <- data.frame(Year = sort(unique(Attacks.pre$Year)))

  for (i in 1:length(b)) {
    Attacks.desg <- cbind(Attacks.desg, Attacks.pre[Attacks.pre$Attack == b[i],3])
  }

  Attacks.desg <- setNames(Attacks.desg, c("Year", b))

  Attacks.desg <- select(Attacks.desg, Year, `Account Hijacking`, `DDoS`, `Defacement`, `DNS`, `Injection`, `Malware`)

  graph1 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `DDoS`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("DDoS") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph2 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `Defacement`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Defacement") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph3 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `Injection`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Injection") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph4 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `Account Hijacking`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Account Hijacking") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph5 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `Malware`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Malware") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph6 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `DNS`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("DNS") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))


  list(graph1, graph2, graph3, graph4, graph5, graph6)

}
Miguel Tuñón authored
256
257
Miguel Tuñón authored
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
GetBaseCertsGraph <- function(Cert_PerCountry, year){
  graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
                           x = reorder(country_short,X2012),
                           y = X2012,
                           xlab = "Country",
                           ylab = "Number of certifications",
                           data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
                           geom = "col",
                           fill = Continent)
  graph1
}
Miguel Tuñón authored
273
274
275
276
277
278
279
280
#' Return every graph used in the report file
#'
#' @param Cert_PerCountry data.frame with the processed data of ISO 27001 certifications
#' @param Attacks data.frame with the processed data of cyberattacks
#'
#' @return data.frame
#' @export
GetReportGraphs <- function(Cert_PerCountry,Attacks) {
Imanol-Mikel Barba Sabariego authored
281
  #2012
Miguel Tuñón authored
282
  graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
Imanol-Mikel Barba Sabariego authored
283
284
                  x = reorder(country_short,X2012),
                  y = X2012,
Miguel Tuñón authored
285
286
                  xlab = "Country",
                  ylab = "Number of certifications",
Miguel Tuñón authored
287
288
289
290
                  data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
                  geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
291
292
293
  attacks2k12 <- Attacks[Attacks$Date < "2013-01-01" & Attacks$Date >= "2012-01-01",]
  frameAttacks2k12 <- as.data.frame(table(attacks2k12$Country))
  colnames(frameAttacks2k12) <- c("Country","Attacks")
Miguel Tuñón authored
294
  graph2 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2012)",
Imanol-Mikel Barba Sabariego authored
295
296
                  x = reorder(Country,Attacks),
                  y = Attacks,
Miguel Tuñón authored
297
298
                  xlab = "Country",
                  ylab = "Number of attacks",
Miguel Tuñón authored
299
300
301
                  data = frameAttacks2k12[frameAttacks2k12$Attacks > mean(frameAttacks2k12$Attacks),],
                  geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
302
303
304
305

  Attacks2012ByMonth <- mutate(attacks2k12, month = format(attacks2k12$Date, "%m")) %>% group_by(month)
  Attack2012FreqByMonth <- as.data.frame(table(Attacks2012ByMonth$month))
  colnames(Attack2012FreqByMonth) <- c("Month", "Attacks")
Miguel Tuñón authored
306
307
  graph3 <- ggplot2::qplot(x = as.numeric(Month),
                  y = Attacks,
Imanol-Mikel Barba Sabariego authored
308
309
310
311
                  main = "Global cyberattack progression by month (2012)",
                  data = Attack2012FreqByMonth,
                  geom = c("point", "smooth"),
                  xlim = c(1,12),
Miguel Tuñón authored
312
                  xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
Imanol-Mikel Barba Sabariego authored
313
314

  #2013
Miguel Tuñón authored
315
  graph4 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2013)",
Imanol-Mikel Barba Sabariego authored
316
317
                  x = reorder(country_short,X2013),
                  y = X2013,
Miguel Tuñón authored
318
319
                  xlab = "Country",
                  ylab = "Number of certifications",
Miguel Tuñón authored
320
321
322
                  data = Cert_PerCountry[Cert_PerCountry$X2013 > mean(Cert_PerCountry$X2013),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
323
324
325
  attacks2k13 <- Attacks[Attacks$Date < "2014-01-01" & Attacks$Date >= "2013-01-01",]
  frameAttacks2k13 <- as.data.frame(table(attacks2k13$Country))
  colnames(frameAttacks2k13) <- c("Country","Attacks")
Miguel Tuñón authored
326
  graph5 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2013)",
Imanol-Mikel Barba Sabariego authored
327
328
                  x = reorder(Country,Attacks),
                  y = Attacks,
Miguel Tuñón authored
329
330
                  xlab = "Country",
                  ylab = "Number of attacks",
Miguel Tuñón authored
331
332
333
                  data = frameAttacks2k13[frameAttacks2k13$Attacks > mean(frameAttacks2k13$Attacks),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
334
335
336
337

  Attacks2013ByMonth <- mutate(attacks2k13, month = format(attacks2k13$Date, "%m")) %>% group_by(month)
  Attack2013FreqByMonth <- as.data.frame(table(Attacks2013ByMonth$month))
  colnames(Attack2013FreqByMonth) <- c("Month", "Attacks")
Miguel Tuñón authored
338
339
  graph6 <- ggplot2::qplot(x = as.numeric(Month),
                  y = Attacks,
Imanol-Mikel Barba Sabariego authored
340
341
342
343
                  main = "Global cyberattack progression by month (2013)",
                  data = Attack2013FreqByMonth,
                  geom = c("point", "smooth"),
                  xlim = c(1,12),
Miguel Tuñón authored
344
                  xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
Imanol-Mikel Barba Sabariego authored
345
346

  #2014
Miguel Tuñón authored
347
  graph7 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2014)",
Imanol-Mikel Barba Sabariego authored
348
349
                  x = reorder(country_short,X2014),
                  y = X2014,
Miguel Tuñón authored
350
351
                  xlab = "Country",
                  ylab = "Number of certifications",
Miguel Tuñón authored
352
353
354
                  data = Cert_PerCountry[Cert_PerCountry$X2014 > mean(Cert_PerCountry$X2014),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
355
356
357
  attacks2k14 <- Attacks[Attacks$Date < "2015-01-01" & Attacks$Date >= "2014-01-01",]
  frameAttacks2k14 <- as.data.frame(table(attacks2k14$Country))
  colnames(frameAttacks2k14) <- c("Country","Attacks")
Miguel Tuñón authored
358
  graph8 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2014)",
Imanol-Mikel Barba Sabariego authored
359
360
                  x = reorder(Country,Attacks),
                  y = Attacks,
Miguel Tuñón authored
361
362
                  xlab = "Country",
                  ylab = "Number of attacks",
Miguel Tuñón authored
363
364
365
                  data = frameAttacks2k14[frameAttacks2k14$Attacks > mean(frameAttacks2k14$Attacks),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
366
367
368
369

  Attacks2014ByMonth <- mutate(attacks2k14, month = format(attacks2k14$Date, "%m")) %>% group_by(month)
  Attack2014FreqByMonth <- as.data.frame(table(Attacks2014ByMonth$month))
  colnames(Attack2014FreqByMonth) <- c("Month", "Attacks")
Miguel Tuñón authored
370
371
  graph9 <- ggplot2::qplot(x = as.numeric(Month),
                  y = Attacks,
Imanol-Mikel Barba Sabariego authored
372
373
374
375
                  main = "Global cyberattack progression by month (2014)",
                  data = Attack2014FreqByMonth,
                  geom = c("point", "smooth"),
                  xlim = c(1,12),
Miguel Tuñón authored
376
                  xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
Imanol-Mikel Barba Sabariego authored
377
378

  #2015
Miguel Tuñón authored
379
  graph10 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2015)",
Imanol-Mikel Barba Sabariego authored
380
381
                  x = reorder(country_short,X2015),
                  y = X2015,
Miguel Tuñón authored
382
383
                  xlab = "Country",
                  ylab = "Number of certifications",
Miguel Tuñón authored
384
385
386
                  data = Cert_PerCountry[Cert_PerCountry$X2015 > mean(Cert_PerCountry$X2015),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
387
388
389
  attacks2k15 <- Attacks[Attacks$Date < "2016-01-01" & Attacks$Date >= "2015-01-01",]
  frameAttacks2k15 <- as.data.frame(table(attacks2k15$Country))
  colnames(frameAttacks2k15) <- c("Country","Attacks")
Miguel Tuñón authored
390
  graph11 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2015)",
Imanol-Mikel Barba Sabariego authored
391
392
                  x = reorder(Country,Attacks),
                  y = Attacks,
Miguel Tuñón authored
393
394
                  xlab = "Country",
                  ylab = "Number of attacks",
Miguel Tuñón authored
395
396
397
                  data = frameAttacks2k15[frameAttacks2k15$Attacks > mean(frameAttacks2k15$Attacks),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
398
399
400
401

  Attacks2015ByMonth <- mutate(attacks2k15, month = format(attacks2k15$Date, "%m")) %>% group_by(month)
  Attack2015FreqByMonth <- as.data.frame(table(Attacks2015ByMonth$month))
  colnames(Attack2015FreqByMonth) <- c("Month", "Attacks")
Miguel Tuñón authored
402
  graph12 <- ggplot2::qplot(x = as.numeric(Month),
Imanol-Mikel Barba Sabariego authored
403
404
405
406
407
                  y = Attacks,
                  main = "Global cyberattack progression by month (2015)",
                  data = Attack2015FreqByMonth,
                  geom = c("point", "smooth"),
                  xlim = c(1,12),
Miguel Tuñón authored
408
                  xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
Imanol-Mikel Barba Sabariego authored
409
410
411
412
413
414




  list(graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9,graph10,graph11,graph12)
}