|
1
2
3
4
5
|
#----------------------------------------------------------------
#-------------------------General evolution----------------------
#----------------------------------------------------------------
|
|
6
|
|
|
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
#' Return graph representing the general attacks evolution by year
#'
#' @param Attacks data.frame with procesed source data
#' @param point.vjust Vector of vertical just to each point label
#' @param point.hjust Vector of Horizontal just to each point label
#' @param iso2013.y Vertical position to ISO27001:2013 label
#' @param iso2013.label.hjust Horizontal just to ISO27001:2013 label
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetAttacksEvolution <- function(Attacks,
point.vjust = 0,
point.hjust = 0,
iso2013.y = 0,
iso2013.label.hjust = 0,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Extracting year from date
attacks.evol <- dplyr::mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
dplyr::group_by(Year)#Grouping by year
#Counting attacks each year
|
|
33
34
35
|
attacks.evol <- as.data.frame(table(attacks.evol$Year))
colnames(attacks.evol) <- c("Year","Attacks")
|
|
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
#Slope of smooth
attacks.evol.slope <- lm(formula = Attacks ~ as.numeric(Year),
data = attacks.evol)$coef[[2]]
#Graph
attacks.evol.graph <- ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = 1,
xlab = "Years",
ylab = "Attacks",
data = attacks.evol,
geom = "line") +
ggplot2::geom_point() +
ggplot2::geom_label(aes(label=attacks.evol$Attacks),
vjust = point.vjust,
hjust = point.hjust)+
ggplot2::theme(plot.title = element_text(hjust = 0.5)) +
ggplot2::geom_smooth(method = "lm", se = FALSE) +
ggplot2::geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =",
signif(attacks.evol.slope))),
color = "blue",
hjust = smooth.label.hjust) +
ggplot2::geom_vline(xintercept = 3,
color = "Red",
linetype = "longdash") +
ggplot2::geom_label(aes(x = "2014", y = iso2013.y,
label = "ISO27001:2013 effects"),
color = "Red",
hjust = iso2013.label.hjust)
list(attacks.evol.graph, attacks.evol.slope)
|
|
68
69
70
|
}
|
|
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
#' Return graph representing the general ISO27001 evolution
#'
#' @param Cert_PerCountry data.frame with procesed source data
#' @param point.vjust Vector of vertical just to each point label
#' @param point.hjust Vector of Horizontal just to each point label
#' @param iso2013.y Vertical position to ISO27001:2013 label
#' @param iso2013.label.hjust Horizontal just to ISO27001:2013 label
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetCertsEvolution <- function(Cert_PerCountry,
point.vjust = 0,
point.hjust = 0,
iso2013.y = 0,
iso2013.label.hjust = 0,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Years from columns to rows in 1 column
Certs.evol <- tidyr::gather(Cert_PerCountry, "Year", "Count", 2:6)
#Group by year
Certs.evol <- dplyr::group_by(Certs.evol, Year)
#Sum counts to 1 row for each year
Certs.evol <- dplyr::summarise(Certs.evol, Count = sum(Count))
#Removing X from years
Certs.evol$Year <- substr(Certs.evol$Year, 2, 5)
#Slope of smooth
Certs.evol.slope <- lm(formula = Count ~ as.numeric(Year),
data = Certs.evol)$coef[[2]]
#Graph
Certs.evol.graph <- ggplot2::qplot(main = "ISO 27001 evolution",
|
|
107
|
x = Certs.evol$Year,
|
|
108
|
y = Certs.evol$Count,
|
|
109
110
111
112
113
114
|
group = 1,
xlab = "Years",
ylab = "Certifications",
data = Certs.evol,
geom = "line") +
geom_point() +
|
|
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
geom_label(aes(label=Certs.evol$Count),
vjust = point.vjust,
hjust = point.hjust)+
theme(plot.title = element_text(hjust = 0.5)) +
ggplot2::geom_smooth(method = "lm", se = FALSE) +
ggplot2::geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =",
signif(Certs.evol.slope))),
color = "blue",
hjust = smooth.label.hjust)+
ggplot2::geom_vline(xintercept = 3,
color = "Red",
linetype = "longdash") +
ggplot2::geom_label(aes(x = "2014", y = iso2013.y,
label = "ISO27001:2013 changes"),
color = "Red",
hjust = iso2013.label.hjust)
list(Certs.evol.graph, Certs.evol.slope)
|
|
134
135
136
|
}
|
|
137
138
139
140
141
142
|
#' Return graph representing the general attacks evolution by month
#'
#' @param Attacks data.frame with procesed source data
#'
#' @return graph
#' @export
|
|
143
144
|
GetAttacksMonthEvolution <- function(Attacks){
|
|
145
146
147
148
|
#Extract Year - Month from date
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y-%m")) %>%
group_by(Year)
#Group by Year - Month
|
|
149
150
151
|
attacks.evol <- as.data.frame(table(attacks.evol$Year))
colnames(attacks.evol) <- c("Year","Attacks")
|
|
152
153
154
155
156
157
158
159
160
|
#Graph
ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = 1,
xlab = "Months",
ylab = "Attacks",
data = attacks.evol,
geom = "line") +
|
|
161
162
163
|
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
geom_smooth(method = 'loess') +
|
|
164
165
166
167
168
|
scale_x_discrete(labels = c("2012/01", "", "", "", "", "", "2012/07", "", "", "", "", "",
"2013/01", "", "", "", "", "", "2013/07", "", "", "", "", "",
"2014/01", "", "", "", "", "", "2014/07", "", "", "", "", "",
"2015/01", "", "", "", "", "", "2015/07", "", "", "", "", "",
"2016/01", "", "", "", "", "", "2016/07", "", "", "", "", ""))
|
|
169
170
171
172
|
}
|
|
173
174
175
|
#----------------------------------------------------------------
#-------------------------Attack type evolution------------------
#----------------------------------------------------------------
|
|
176
|
|
|
177
|
|
|
178
179
180
181
182
183
184
185
186
187
188
189
190
|
#' Return pie graph to show % of each attack type
#'
#' @param Attacks data.frame with procesed source data
#' @param label.vjust Vector of vertical just to each portion label
#' @param label.hjust Vector of horizontal just to each portion label
#'
#' @return list(graph, AttackTypeShowedList)
#' @export
GetAttackTypePie <- function (Attacks,
label.vjust = 0,
label.hjust = 0){
#Group by attack type
|
|
191
|
attack.pie <- group_by(Attacks, Attack.standar)
|
|
192
|
#Counting rows for each attack type
|
|
193
194
195
|
attack.pie <- as.data.frame(table(attack.pie$Attack.standar))
attack.pie <- setNames(attack.pie, c("Attack", "Count"))
|
|
196
|
#Removing rows without attack type defined
|
|
197
|
attack.pie <- attack.pie[attack.pie$Attack != "",]
|
|
198
|
#Removing attacks with less than 1% of representation from total
|
|
199
|
attack.pie <- attack.pie[attack.pie$Count > (sum(attack.pie$Count) * 0.01),]
|
|
200
201
|
#Calc % of each attack type
attack.pie <- mutate(attack.pie, Perc=paste(round(100 * attack.pie$Count / sum(attack.pie$Count), 2), "%"))
|
|
202
203
|
|
|
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
#Graph
graph1 <- ggplot(data=attack.pie,
aes(x=factor(1),
y=Count,
fill=Attack)) +
geom_col(width = 1, color='black') +
geom_label(aes(label = attack.pie$Perc),
vjust = label.vjust,
hjust = label.hjust) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("Attack types")
#Returning graph and attack list
list(graph1, unique(attack.pie$Attack))
|
|
223
224
225
|
}
|
|
226
227
228
229
230
231
232
233
234
235
236
237
|
#' Return graph to show the evolution of a attack types list
#'
#' @param Attacks data.frame with procesed source data
#' @param TypeList List with attack types to show
#'
#' @return list(graph, data.frame with TypeList attacks data by year)
#' @export
GetAttackTypeEvolution <- function(Attacks, TypeList){
#Obtaining year from date
Attacks.pre <- dplyr::mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
group_by(Year, Attack.standar) #group by attack type
#Count rows for each attack type and each year
|
|
238
239
|
Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
|
|
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
#Removing rows without an attack type specified
Attacks.pre <- Attacks.pre[Attacks.pre$Attack %in% TypeList,]
#Graph
graph1 <- ggplot(data = Attacks.pre,
aes(x = Year,
y = Count,
color = Attack,
group = Attack)) +
geom_point() +
geom_line() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Attack type evolution") +
labs(colour = "Attack type") + xlab("Years") + ylab("Attacks")
#Return graph and used data to separate representation
list(graph1, Attacks.pre)
|
|
256
257
258
259
|
}
|
|
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
#' Return graph to show the evolution of a single attack type and his smooth
#'
#' @param Attacks data.frame with procesed source data
#' @param AttackType Attack type to represent
#' @param smooth.x Horizontal position to smooth slope label
#' @param smooth.y Vertical position to smooth slope label
#' @param smooth.label.hjust Horizontal just to smooth slope label
#'
#' @return list(graph, slope)
#' @export
GetAttackTypeSigleEvolution <- function(Attacks,
AttackType,
smooth.x = 0,
smooth.y = 0,
smooth.label.hjust = 0){
#Filtering for the AttackType specified
attacks.evol <- Attacks[Attacks$Attack == AttackType,]
#Cal slope
slope1 <- lm(formula = Count ~ as.numeric(Year), data = attacks.evol)$coef[[2]]
#Graph
graph1 <- ggplot(data = attacks.evol,
aes(x = Year, y = Count, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle(AttackType) +
xlab("Years") + ylab("Attacks")+
geom_smooth(method = "lm",
se = FALSE) +
geom_label(aes(x = smooth.x, y = smooth.y,
label = paste("Slope =", signif(slope1, 5))),
color = "blue",
hjust = smooth.label.hjust)
#Returning list(graph, slope)
list(graph1, slope1)
|
|
297
298
299
|
}
|
|
300
301
302
303
|
#----------------------------------------------------------------
#-------------------------Geolocal evolution---------
#----------------------------------------------------------------
|
|
304
305
306
307
308
309
|
GetContinentPie <- function (Attacks,
Attacks.label.vjust = 0,
Attacks.label.hjust = 0,
Cert_PerCountry,
Certs.label.vjust = 0,
Certs.label.hjust = 0){
|
|
310
|
|
|
311
|
#Group attacks by continent
|
|
312
|
attack.pie <- group_by(Attacks, Continent)
|
|
313
|
#Count attacks for each continent
|
|
314
315
|
attack.pie <- as.data.frame(table(attack.pie$Continent))
attack.pie <- setNames(attack.pie, c("Continent", "Count"))
|
|
316
|
#Remove rows without Continent specified
|
|
317
|
attack.pie <- attack.pie[attack.pie$Continent != "",]
|
|
318
319
|
#Calc % of each continent
attack.pie <- mutate(attack.pie, perc = round(100 * attack.pie$Count / sum(attack.pie$Count), 2))
|
|
320
|
|
|
321
|
#Attacks graph
|
|
322
323
324
325
|
graph1 <- ggplot(data=attack.pie,
aes(x=factor(1),
y=Count,
fill=Continent)) +
|
|
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
geom_col(width = 1, color='black') +
geom_label(aes(label=paste(attack.pie$perc, "%")),
vjust = Attacks.label.vjust,
hjust = Attacks.label.hjust) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("Attacks")
#Grouping certifications by continent
cert.pie <- group_by(Cert_PerCountry, Continent)
#Counting certificates for each continent
cert.pie <- dplyr::summarise(cert.pie, Count = sum(X2011 + X2012 + X2013 + X2014 + X2015))
#Remove rows without Continent specified
cert.pie <- cert.pie[cert.pie$Continent != "",]
#Calc % of each continent
cert.pie <- mutate(cert.pie, perc = round(100 * cert.pie$Count / sum(cert.pie$Count), 2))
#Certifications graph
|
|
349
350
351
352
|
graph2 <- ggplot(data=cert.pie,
aes(x=factor(1),
y=Count,
fill=Continent)) +
|
|
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
geom_col(width = 1, color='black') +
geom_label(aes(label=paste(cert.pie$perc, "%")),
vjust = Certs.label.vjust,
hjust = Certs.label.hjust) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("ISO 27001")
list(graph1, unique(attack.pie[attack.pie$perc > 5,]$Continent),
graph2, unique(cert.pie[cert.pie$perc > 5,]$Continent))
|
|
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
}
GetContinentAttacksEvolution <- function(Attacks){
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Continent, Year)
attacks.evol <- as.data.frame(table(attacks.evol$Continent, attacks.evol$Year))
colnames(attacks.evol) <- c("Continent", "Year","Attacks")
attacks.evol <- attacks.evol[attacks.evol$Continent != "Oceania",]
attacks.evol <- attacks.evol[attacks.evol$Continent != "Africa",]
graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = Continent,
xlab = "Years",
ylab = "Attacks",
data = attacks.evol,
geom = "point",
color = Continent) +
geom_line() +
theme(plot.title = element_text(hjust = 0.5))
graph1
}
GetContinentCertsEvolution <- function(Cert_PerCountry){
certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>% group_by(Continent, Year)
certs.evol <- summarise(certs.evol,
#Continent = Continent,
#Year = Year,
Certs = sum(Certs))
certs.evol$Year <- substr(certs.evol$Year,2,5)
certs.evol <- certs.evol[certs.evol$Continent != "Oceania",]
certs.evol <- certs.evol[certs.evol$Continent != "Africa",]
graph1 <- ggplot2::qplot(main = "ISO 27001 evolution",
x = certs.evol$Year,
y = certs.evol$Certs,
group = Continent,
xlab = "Years",
ylab = "Certifications",
data = certs.evol,
geom = "point",
color = Continent) +
geom_line() +
theme(plot.title = element_text(hjust = 0.5))
graph1
}
GetContinentAttacksTopEvolution <- function(Attacks){
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Continent)
attacks.evol <- as.data.frame(table(attacks.evol$Year, attacks.evol$Continent))
attacks.evol <- setNames(attacks.evol, c("Year", "Continent", "Count"))
attacks.evol <- attacks.evol[attacks.evol$Continent != "",]
attacks.evol <- spread(attacks.evol, "Continent", "Count")
graph1 <- ggplot(data = attacks.evol,
aes(x = Year, y = Americas, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Americas") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph2 <- ggplot(data = attacks.evol,
aes(x = Year, y = Asia, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Asia") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph3 <- ggplot(data = attacks.evol,
aes(x = Year, y = Europe, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Europe") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
list(graph1, graph2, graph3)
}
GetContinentCertsTopEvolution <- function(Attacks){
certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>% group_by(Continent, Year)
|
|
472
|
|
|
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
|
certs.evol <- summarise(certs.evol,
#Continent = Continent,
#Year = Year,
Certs = sum(Certs))
certs.evol$Year <- substr(certs.evol$Year,2,5)
certs.evol <- spread(certs.evol, "Continent", "Certs")
graph1 <- ggplot(data = certs.evol,
aes(x = Year, y = Americas, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Americas") +
xlab("Years") + ylab("Certifications")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph2 <- ggplot(data = certs.evol,
aes(x = Year, y = Asia, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Asia") +
xlab("Years") + ylab("Certifications")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph3 <- ggplot(data = certs.evol,
aes(x = Year, y = Europe, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Europe") +
xlab("Years") + ylab("Certifications")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
list(graph1, graph2, graph3)
}
GetCountriesCol <- function(Attacks, Cert_PerCountry){
certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>% group_by(Continent, country_short)
certs.evol <- summarise(certs.evol,
Certs = sum(Certs))
graph1 <- ggplot2::ggplot(aes(x = reorder(country_short, Certs),
y = Certs),
data = certs.evol[certs.evol$Certs > (sum(certs.evol$Certs) * 0.02),]) +
geom_col(aes(fill = Continent)) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("ISO 27001") +
xlab("Country") + ylab("Certifications")
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Continent, Country)
attacks.evol <- as.data.frame(table(attacks.evol$Year, attacks.evol$Continent, attacks.evol$Country))
attacks.evol <- setNames(attacks.evol, c("Year", "Continent", "Country", "Count"))
attacks.evol <- attacks.evol[attacks.evol$Continent != "",]
attacks.evol <- attacks.evol[attacks.evol$Country != "",]
attacks.evol <- attacks.evol[attacks.evol$Country != "AU",]
attacks.evol <- attacks.evol[attacks.evol$Count > (sum((attacks.evol[attacks.evol$Country != "US",])$Count) * 0.01),]
attacks.evol <- arrange(attacks.evol, Count)
graph2 <- ggplot2::ggplot(aes(x = reorder(Country, Count),
y = Count),
data = attacks.evol) +
geom_col(aes(fill = Continent)) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Attacks") +
xlab("Country") + ylab("Attacks")
list(graph1, graph2)
}
|
|
556
|
|
|
557
558
559
560
561
562
563
564
|
GetCountriesAttacksTopEvolution <- function(Attacks){
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Country)
attacks.evol <- as.data.frame(table(attacks.evol$Year, attacks.evol$Country))
attacks.evol <- setNames(attacks.evol, c("Year", "Country", "Count"))
attacks.evol <- attacks.evol[attacks.evol$Country != "",]
attacks.evol <- spread(attacks.evol, "Country", "Count")
|
|
565
|
slope1 <- lm(formula = US ~ as.numeric(Year), data = attacks.evol)
|
|
566
567
568
569
570
571
572
573
574
|
graph1 <- ggplot(data = attacks.evol,
aes(x = Year, y = US, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("US") +
xlab("Years") + ylab("Attacks")+
|
|
575
576
|
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..)) +
geom_label(aes(x = "2014", y = 700, label = signif(slope1$coef[[2]])), color = "blue")
|
|
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
graph2 <- ggplot(data = attacks.evol,
aes(x = Year, y = GB, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("GB") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph3 <- ggplot(data = attacks.evol,
aes(x = Year, y = IN, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("IN") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph4 <- ggplot(data = attacks.evol,
aes(x = Year, y = JP, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("JP") +
xlab("Years") + ylab("Attacks")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
list(graph1, graph2, graph3, graph4)
}
GetCountriesCertsTopEvolution <- function(Attacks){
certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>% group_by(country_short, Year)
certs.evol <- rbind(certs.evol[certs.evol$country_short == "US",],
certs.evol[certs.evol$country_short == "GB",],
certs.evol[certs.evol$country_short == "IN",],
certs.evol[certs.evol$country_short == "JP",])
certs.evol <- summarise(certs.evol,
Certs = sum(Certs))
certs.evol$Year <- substr(certs.evol$Year,2,5)
certs.evol <- spread(certs.evol, "country_short", "Certs")
graph1 <- ggplot(data = certs.evol,
aes(x = Year, y = US, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("US") +
xlab("Years") + ylab("Certifications")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph2 <- ggplot(data = certs.evol,
aes(x = Year, y = GB, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("GB") +
xlab("Years") + ylab("Certifications")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph3 <- ggplot(data = certs.evol,
aes(x = Year, y = IN, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("IN") +
xlab("Years") + ylab("Certifications")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
graph4 <- ggplot(data = certs.evol,
aes(x = Year, y = JP, group = 1)) +
geom_line() +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("JP") +
xlab("Years") + ylab("Certifications")+
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))
list(graph1, graph2, graph3, graph4)
}
#----------------------------------------------------------------
#-------------------------gelocal/type---------------------------
#----------------------------------------------------------------
GetContinentAttackPie <- function (Attacks){
attack.pie <- group_by(Attacks, Attack.standar, Country)
attack.pie <- as.data.frame(table(attack.pie$Country, attack.pie$Attack.standar))
attack.pie <- setNames(attack.pie, c("Country", "Attack", "Count"))
attack.pie <- attack.pie[attack.pie$Country != "",]
attack.pie <- attack.pie[attack.pie$Attack != "",]
attack.pie$Attack <- as.character(attack.pie$Attack)
attack.pie[attack.pie$Attack != "DDoS" &
attack.pie$Attack != "Defacement" &
attack.pie$Attack != "Injection",]$Attack <- "Otros"
attack.pie$Attack <- as.factor(attack.pie$Attack)
attack.pie <- group_by(attack.pie, Attack, Country)
attack.pie <- summarise(attack.pie, Count = sum(Count))
attack.pie.US <- attack.pie[attack.pie$Country == "US",]
attack.pie.JP <- attack.pie[attack.pie$Country == "JP",]
graph1 <- ggplot(data=attack.pie.US,
aes(x=factor(1),
y=Count,
fill=Attack)) +
geom_col(width = 1, color='black') +
geom_label(aes(label=paste(round(100 * attack.pie.US$Count / sum(attack.pie.US$Count), 2), "%")),
vjust=c(0),
hjust=c(0)) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("US")
graph2 <- ggplot(data=attack.pie.JP,
aes(x=factor(1),
y=Count,
fill=Attack)) +
geom_col(width = 1, color='black') +
geom_label(aes(label=paste(round(100 * attack.pie.JP$Count / sum(attack.pie.JP$Count), 2), "%")),
vjust=c(0),
hjust=c(0)) +
coord_polar(theta="y") +
scale_x_discrete(labels = c("")) +
scale_y_discrete(labels = c("")) +
theme(plot.title = element_text(hjust = 0.5),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle("JP")
list(graph1, graph2)
}
|
|
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
|
GetContinentAttackEvolution <- function(Attacks){
attack.evol <-mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>%
group_by(Attack.standar, Country, Year)
attack.evol <- as.data.frame(table(attack.evol$Country, attack.evol$Attack.standar, attack.evol$Year))
attack.evol <- setNames(attack.evol, c("Country", "Attack", "Year", "Count"))
attack.evol <- attack.evol[attack.evol$Country != "",]
attack.evol <- attack.evol[attack.evol$Attack != "",]
attack.evol$Attack <- as.character(attack.evol$Attack)
attack.evol[attack.evol$Attack != "DDoS" &
attack.evol$Attack != "Defacement" &
attack.evol$Attack != "Injection",]$Attack <- "Otros"
attack.evol$Attack <- as.factor(attack.evol$Attack)
attack.evol <- group_by(attack.evol, Attack, Country, Year)
attack.evol <- summarise(attack.evol, Count = sum(Count))
attack.evol.US <- attack.evol[attack.evol$Country == "US",]
attack.evol.JP <- attack.evol[attack.evol$Country == "JP",]
attack.evol.US.Otros <- attack.evol.US[attack.evol.US$Attack == "Otros",]
attack.evol.JP.Otros <- attack.evol.JP[attack.evol.JP$Attack == "Otros",]
graph1 <- ggplot2::qplot(main = "US",
x = attack.evol.US$Year,
y = attack.evol.US$Count,
group = Attack,
xlab = "Years",
ylab = "Certifications",
data = attack.evol.US,
geom = "point",
color = Attack) +
geom_line() +
theme(plot.title = element_text(hjust = 0.5))
graph2 <- ggplot2::qplot(main = "JP",
x = attack.evol.JP$Year,
y = attack.evol.JP$Count,
group = Attack,
xlab = "Years",
ylab = "Certifications",
data = attack.evol.JP,
geom = "point",
color = Attack) +
geom_line() +
theme(plot.title = element_text(hjust = 0.5))
graph3 <- ggplot2::qplot(main = "US",
x = attack.evol.US.Otros$Year,
y = attack.evol.US.Otros$Count,
group = 1,
xlab = "Years",
ylab = "Certifications",
data = attack.evol.US.Otros,
geom = "point") +
geom_line() +
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..)) +
theme(plot.title = element_text(hjust = 0.5))
graph4 <- ggplot2::qplot(main = "JP",
x = attack.evol.JP.Otros$Year,
y = attack.evol.JP.Otros$Count,
group = 1,
xlab = "Years",
ylab = "Certifications",
data = attack.evol.JP.Otros,
geom = "point") +
geom_line() +
stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..)) +
theme(plot.title = element_text(hjust = 0.5))
list(graph1, graph2, graph3, graph4)
}
|
|
821
822
823
|
#----------------------------------------------------------------
#----------------------------------------------------------------
#----------------------------------------------------------------
|
|
824
825
|
|
|
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
GetBaseCertsGraph <- function(Cert_PerCountry, year){
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
x = reorder(country_short,X2012),
y = X2012,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
geom = "col",
fill = Continent)
graph1
}
|
|
841
842
843
844
845
846
847
848
|
#' Return every graph used in the report file
#'
#' @param Cert_PerCountry data.frame with the processed data of ISO 27001 certifications
#' @param Attacks data.frame with the processed data of cyberattacks
#'
#' @return data.frame
#' @export
GetReportGraphs <- function(Cert_PerCountry,Attacks) {
|
|
849
|
#2012
|
|
850
|
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
|
|
851
852
|
x = reorder(country_short,X2012),
y = X2012,
|
|
853
854
|
xlab = "Country",
ylab = "Number of certifications",
|
|
855
856
857
858
|
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
geom = "col",
fill = Continent)
|
|
859
860
861
|
attacks2k12 <- Attacks[Attacks$Date < "2013-01-01" & Attacks$Date >= "2012-01-01",]
frameAttacks2k12 <- as.data.frame(table(attacks2k12$Country))
colnames(frameAttacks2k12) <- c("Country","Attacks")
|
|
862
|
graph2 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2012)",
|
|
863
864
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
865
866
|
xlab = "Country",
ylab = "Number of attacks",
|
|
867
868
869
|
data = frameAttacks2k12[frameAttacks2k12$Attacks > mean(frameAttacks2k12$Attacks),],
geom = "col",
fill = Continent)
|
|
870
871
872
873
|
Attacks2012ByMonth <- mutate(attacks2k12, month = format(attacks2k12$Date, "%m")) %>% group_by(month)
Attack2012FreqByMonth <- as.data.frame(table(Attacks2012ByMonth$month))
colnames(Attack2012FreqByMonth) <- c("Month", "Attacks")
|
|
874
875
|
graph3 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
876
877
878
879
|
main = "Global cyberattack progression by month (2012)",
data = Attack2012FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
880
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
881
882
|
#2013
|
|
883
|
graph4 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2013)",
|
|
884
885
|
x = reorder(country_short,X2013),
y = X2013,
|
|
886
887
|
xlab = "Country",
ylab = "Number of certifications",
|
|
888
889
890
|
data = Cert_PerCountry[Cert_PerCountry$X2013 > mean(Cert_PerCountry$X2013),]
, geom = "col",
fill = Continent)
|
|
891
892
893
|
attacks2k13 <- Attacks[Attacks$Date < "2014-01-01" & Attacks$Date >= "2013-01-01",]
frameAttacks2k13 <- as.data.frame(table(attacks2k13$Country))
colnames(frameAttacks2k13) <- c("Country","Attacks")
|
|
894
|
graph5 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2013)",
|
|
895
896
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
897
898
|
xlab = "Country",
ylab = "Number of attacks",
|
|
899
900
901
|
data = frameAttacks2k13[frameAttacks2k13$Attacks > mean(frameAttacks2k13$Attacks),]
, geom = "col",
fill = Continent)
|
|
902
903
904
905
|
Attacks2013ByMonth <- mutate(attacks2k13, month = format(attacks2k13$Date, "%m")) %>% group_by(month)
Attack2013FreqByMonth <- as.data.frame(table(Attacks2013ByMonth$month))
colnames(Attack2013FreqByMonth) <- c("Month", "Attacks")
|
|
906
907
|
graph6 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
908
909
910
911
|
main = "Global cyberattack progression by month (2013)",
data = Attack2013FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
912
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
913
914
|
#2014
|
|
915
|
graph7 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2014)",
|
|
916
917
|
x = reorder(country_short,X2014),
y = X2014,
|
|
918
919
|
xlab = "Country",
ylab = "Number of certifications",
|
|
920
921
922
|
data = Cert_PerCountry[Cert_PerCountry$X2014 > mean(Cert_PerCountry$X2014),]
, geom = "col",
fill = Continent)
|
|
923
924
925
|
attacks2k14 <- Attacks[Attacks$Date < "2015-01-01" & Attacks$Date >= "2014-01-01",]
frameAttacks2k14 <- as.data.frame(table(attacks2k14$Country))
colnames(frameAttacks2k14) <- c("Country","Attacks")
|
|
926
|
graph8 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2014)",
|
|
927
928
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
929
930
|
xlab = "Country",
ylab = "Number of attacks",
|
|
931
932
933
|
data = frameAttacks2k14[frameAttacks2k14$Attacks > mean(frameAttacks2k14$Attacks),]
, geom = "col",
fill = Continent)
|
|
934
935
936
937
|
Attacks2014ByMonth <- mutate(attacks2k14, month = format(attacks2k14$Date, "%m")) %>% group_by(month)
Attack2014FreqByMonth <- as.data.frame(table(Attacks2014ByMonth$month))
colnames(Attack2014FreqByMonth) <- c("Month", "Attacks")
|
|
938
939
|
graph9 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
940
941
942
943
|
main = "Global cyberattack progression by month (2014)",
data = Attack2014FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
944
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
945
946
|
#2015
|
|
947
|
graph10 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2015)",
|
|
948
949
|
x = reorder(country_short,X2015),
y = X2015,
|
|
950
951
|
xlab = "Country",
ylab = "Number of certifications",
|
|
952
953
954
|
data = Cert_PerCountry[Cert_PerCountry$X2015 > mean(Cert_PerCountry$X2015),]
, geom = "col",
fill = Continent)
|
|
955
956
957
|
attacks2k15 <- Attacks[Attacks$Date < "2016-01-01" & Attacks$Date >= "2015-01-01",]
frameAttacks2k15 <- as.data.frame(table(attacks2k15$Country))
colnames(frameAttacks2k15) <- c("Country","Attacks")
|
|
958
|
graph11 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2015)",
|
|
959
960
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
961
962
|
xlab = "Country",
ylab = "Number of attacks",
|
|
963
964
965
|
data = frameAttacks2k15[frameAttacks2k15$Attacks > mean(frameAttacks2k15$Attacks),]
, geom = "col",
fill = Continent)
|
|
966
967
968
969
|
Attacks2015ByMonth <- mutate(attacks2k15, month = format(attacks2k15$Date, "%m")) %>% group_by(month)
Attack2015FreqByMonth <- as.data.frame(table(Attacks2015ByMonth$month))
colnames(Attack2015FreqByMonth) <- c("Month", "Attacks")
|
|
970
|
graph12 <- ggplot2::qplot(x = as.numeric(Month),
|
|
971
972
973
974
975
|
y = Attacks,
main = "Global cyberattack progression by month (2015)",
data = Attack2015FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
976
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
977
978
979
980
981
982
|
list(graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9,graph10,graph11,graph12)
}
|