|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
GetAttacksEvolution <- function(Attacks){
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year)
attacks.evol <- as.data.frame(table(attacks.evol$Year))
colnames(attacks.evol) <- c("Year","Attacks")
graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = 1,
xlab = "Years",
ylab = "Attacks",
data = attacks.evol,
geom = "line") +
geom_point() +
geom_label(aes(label=attacks.evol$Attacks),
vjust=c(1.5, 0, 0, -0.5, -0.5),
hjust=c(0.5, -0.5, 1.5, 0, 0))+
theme(plot.title = element_text(hjust = 0.5))
graph1
}
GetCertsEvolution <- function(Certs){
Certs.evol <- data.frame(Year = c(2011, 2012, 2013, 2014, 2015),
Certs = c(sum(Certs$X2011),
sum(Certs$X2012),
sum(Certs$X2013),
sum(Certs$X2014),
sum(Certs$X2015)))
graph1 <- ggplot2::qplot(main = "ISO 27001 evolution",
x = Certs.evol$Year,
y = Certs.evol$Certs,
group = 1,
xlab = "Years",
ylab = "Certifications",
data = Certs.evol,
geom = "line") +
geom_point() +
geom_label(aes(label=Certs.evol$Certs),
vjust=c(0.2, -0.7, 0, 0, 0.5),
hjust=c(-0.6, 1, 1.2, 1.2, 1.2))+
theme(plot.title = element_text(hjust = 0.5))
graph1
}
GetAttacksMonthEvolution <- function(Attacks){
attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y-%m")) %>% group_by(Year)
attacks.evol <- as.data.frame(table(attacks.evol$Year))
colnames(attacks.evol) <- c("Year","Attacks")
graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
x = attacks.evol$Year,
y = attacks.evol$Attacks,
group = 1,
xlab = "Months",
ylab = "Attacks",
data = attacks.evol,
geom = "line") +
geom_point() +
theme(plot.title = element_text(hjust = 0.5)) +
geom_smooth(method = 'loess') +
scale_x_discrete(labels = c("2012", "", "", "", "", "", "", "", "", "", "", "",
"2013", "", "", "", "", "", "", "", "", "", "", "",
"2014", "", "", "", "", "", "", "", "", "", "", "",
"2015", "", "", "", "", "", "", "", "", "", "", "",
"2016", "", "", "", "", "", "", "", "", "", "", ""))
graph1
}
|
|
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
GetBaseCertsGraph <- function(Cert_PerCountry, year){
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
x = reorder(country_short,X2012),
y = X2012,
xlab = "Country",
ylab = "Number of certifications",
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
geom = "col",
fill = Continent)
graph1
}
|
|
98
99
100
101
102
103
104
105
|
#' Return every graph used in the report file
#'
#' @param Cert_PerCountry data.frame with the processed data of ISO 27001 certifications
#' @param Attacks data.frame with the processed data of cyberattacks
#'
#' @return data.frame
#' @export
GetReportGraphs <- function(Cert_PerCountry,Attacks) {
|
|
106
|
#2012
|
|
107
|
graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
|
|
108
109
|
x = reorder(country_short,X2012),
y = X2012,
|
|
110
111
|
xlab = "Country",
ylab = "Number of certifications",
|
|
112
113
114
115
|
data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
geom = "col",
fill = Continent)
|
|
116
117
118
|
attacks2k12 <- Attacks[Attacks$Date < "2013-01-01" & Attacks$Date >= "2012-01-01",]
frameAttacks2k12 <- as.data.frame(table(attacks2k12$Country))
colnames(frameAttacks2k12) <- c("Country","Attacks")
|
|
119
|
graph2 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2012)",
|
|
120
121
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
122
123
|
xlab = "Country",
ylab = "Number of attacks",
|
|
124
125
126
|
data = frameAttacks2k12[frameAttacks2k12$Attacks > mean(frameAttacks2k12$Attacks),],
geom = "col",
fill = Continent)
|
|
127
128
129
130
|
Attacks2012ByMonth <- mutate(attacks2k12, month = format(attacks2k12$Date, "%m")) %>% group_by(month)
Attack2012FreqByMonth <- as.data.frame(table(Attacks2012ByMonth$month))
colnames(Attack2012FreqByMonth) <- c("Month", "Attacks")
|
|
131
132
|
graph3 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
133
134
135
136
|
main = "Global cyberattack progression by month (2012)",
data = Attack2012FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
137
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
138
139
|
#2013
|
|
140
|
graph4 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2013)",
|
|
141
142
|
x = reorder(country_short,X2013),
y = X2013,
|
|
143
144
|
xlab = "Country",
ylab = "Number of certifications",
|
|
145
146
147
|
data = Cert_PerCountry[Cert_PerCountry$X2013 > mean(Cert_PerCountry$X2013),]
, geom = "col",
fill = Continent)
|
|
148
149
150
|
attacks2k13 <- Attacks[Attacks$Date < "2014-01-01" & Attacks$Date >= "2013-01-01",]
frameAttacks2k13 <- as.data.frame(table(attacks2k13$Country))
colnames(frameAttacks2k13) <- c("Country","Attacks")
|
|
151
|
graph5 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2013)",
|
|
152
153
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
154
155
|
xlab = "Country",
ylab = "Number of attacks",
|
|
156
157
158
|
data = frameAttacks2k13[frameAttacks2k13$Attacks > mean(frameAttacks2k13$Attacks),]
, geom = "col",
fill = Continent)
|
|
159
160
161
162
|
Attacks2013ByMonth <- mutate(attacks2k13, month = format(attacks2k13$Date, "%m")) %>% group_by(month)
Attack2013FreqByMonth <- as.data.frame(table(Attacks2013ByMonth$month))
colnames(Attack2013FreqByMonth) <- c("Month", "Attacks")
|
|
163
164
|
graph6 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
165
166
167
168
|
main = "Global cyberattack progression by month (2013)",
data = Attack2013FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
169
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
170
171
|
#2014
|
|
172
|
graph7 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2014)",
|
|
173
174
|
x = reorder(country_short,X2014),
y = X2014,
|
|
175
176
|
xlab = "Country",
ylab = "Number of certifications",
|
|
177
178
179
|
data = Cert_PerCountry[Cert_PerCountry$X2014 > mean(Cert_PerCountry$X2014),]
, geom = "col",
fill = Continent)
|
|
180
181
182
|
attacks2k14 <- Attacks[Attacks$Date < "2015-01-01" & Attacks$Date >= "2014-01-01",]
frameAttacks2k14 <- as.data.frame(table(attacks2k14$Country))
colnames(frameAttacks2k14) <- c("Country","Attacks")
|
|
183
|
graph8 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2014)",
|
|
184
185
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
186
187
|
xlab = "Country",
ylab = "Number of attacks",
|
|
188
189
190
|
data = frameAttacks2k14[frameAttacks2k14$Attacks > mean(frameAttacks2k14$Attacks),]
, geom = "col",
fill = Continent)
|
|
191
192
193
194
|
Attacks2014ByMonth <- mutate(attacks2k14, month = format(attacks2k14$Date, "%m")) %>% group_by(month)
Attack2014FreqByMonth <- as.data.frame(table(Attacks2014ByMonth$month))
colnames(Attack2014FreqByMonth) <- c("Month", "Attacks")
|
|
195
196
|
graph9 <- ggplot2::qplot(x = as.numeric(Month),
y = Attacks,
|
|
197
198
199
200
|
main = "Global cyberattack progression by month (2014)",
data = Attack2014FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
201
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
202
203
|
#2015
|
|
204
|
graph10 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2015)",
|
|
205
206
|
x = reorder(country_short,X2015),
y = X2015,
|
|
207
208
|
xlab = "Country",
ylab = "Number of certifications",
|
|
209
210
211
|
data = Cert_PerCountry[Cert_PerCountry$X2015 > mean(Cert_PerCountry$X2015),]
, geom = "col",
fill = Continent)
|
|
212
213
214
|
attacks2k15 <- Attacks[Attacks$Date < "2016-01-01" & Attacks$Date >= "2015-01-01",]
frameAttacks2k15 <- as.data.frame(table(attacks2k15$Country))
colnames(frameAttacks2k15) <- c("Country","Attacks")
|
|
215
|
graph11 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2015)",
|
|
216
217
|
x = reorder(Country,Attacks),
y = Attacks,
|
|
218
219
|
xlab = "Country",
ylab = "Number of attacks",
|
|
220
221
222
|
data = frameAttacks2k15[frameAttacks2k15$Attacks > mean(frameAttacks2k15$Attacks),]
, geom = "col",
fill = Continent)
|
|
223
224
225
226
|
Attacks2015ByMonth <- mutate(attacks2k15, month = format(attacks2k15$Date, "%m")) %>% group_by(month)
Attack2015FreqByMonth <- as.data.frame(table(Attacks2015ByMonth$month))
colnames(Attack2015FreqByMonth) <- c("Month", "Attacks")
|
|
227
|
graph12 <- ggplot2::qplot(x = as.numeric(Month),
|
|
228
229
230
231
232
|
y = Attacks,
main = "Global cyberattack progression by month (2015)",
data = Attack2015FreqByMonth,
geom = c("point", "smooth"),
xlim = c(1,12),
|
|
233
|
xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
|
|
234
235
236
237
238
239
|
list(graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9,graph10,graph11,graph12)
}
|