Blame view

ISO27001effectiveness/R/ReportGraphs.R 31.6 KB
Miguel Tuñón authored
1
2
3
4
5

#----------------------------------------------------------------
#-------------------------General evolution----------------------
#----------------------------------------------------------------
Miguel Tuñón authored
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
GetAttacksEvolution <- function(Attacks){

  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year)
  attacks.evol <- as.data.frame(table(attacks.evol$Year))
  colnames(attacks.evol) <- c("Year","Attacks")

  graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
                           x = attacks.evol$Year,
                           y = attacks.evol$Attacks,
                           group = 1,
                           xlab = "Years",
                           ylab = "Attacks",
                           data = attacks.evol,
                           geom = "line")  +
            geom_point() +
            geom_label(aes(label=attacks.evol$Attacks),
                       vjust=c(1.5, 0, 0, -0.5, -0.5),
                       hjust=c(0.5, -0.5, 1.5, 0, 0))+
            theme(plot.title = element_text(hjust = 0.5))

  graph1

}

GetCertsEvolution <- function(Certs){

  Certs.evol <- data.frame(Year = c(2011, 2012, 2013, 2014, 2015),
                  Certs = c(sum(Certs$X2011),
                            sum(Certs$X2012),
                            sum(Certs$X2013),
                            sum(Certs$X2014),
                            sum(Certs$X2015)))

  graph1 <- ggplot2::qplot(main = "ISO 27001 evolution",
                           x = Certs.evol$Year,
                           y = Certs.evol$Certs,
                           group = 1,
                           xlab = "Years",
                           ylab = "Certifications",
                           data = Certs.evol,
                          geom = "line") +
            geom_point() +
            geom_label(aes(label=Certs.evol$Certs),
                       vjust=c(0.2, -0.7, 0, 0, 0.5),
                       hjust=c(-0.6, 1, 1.2, 1.2, 1.2))+
            theme(plot.title = element_text(hjust = 0.5))

  graph1

}

GetAttacksMonthEvolution <- function(Attacks){

  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y-%m")) %>% group_by(Year)
  attacks.evol <- as.data.frame(table(attacks.evol$Year))
  colnames(attacks.evol) <- c("Year","Attacks")

  graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
                           x = attacks.evol$Year,
                           y = attacks.evol$Attacks,
                           group = 1,
                           xlab = "Months",
                           ylab = "Attacks",
                           data = attacks.evol,
                           geom = "line")  +
    geom_point() +
    theme(plot.title = element_text(hjust = 0.5)) +
    geom_smooth(method = 'loess') +
    scale_x_discrete(labels = c("2012", "", "", "", "", "", "", "", "", "", "", "",
                                "2013", "", "", "", "", "", "", "", "", "", "", "",
                                "2014", "", "", "", "", "", "", "", "", "", "", "",
                                "2015", "", "", "", "", "", "", "", "", "", "", "",
                                "2016", "", "", "", "", "", "", "", "", "", "", ""))

  graph1

}
Miguel Tuñón authored
84
85
86
#----------------------------------------------------------------
#-------------------------Attack type evolution------------------
#----------------------------------------------------------------
Miguel Tuñón authored
87
Miguel Tuñón authored
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
GetAttackTypePie <- function (Attacks){

  attack.pie <- group_by(Attacks, Attack.standar)
  attack.pie <- as.data.frame(table(attack.pie$Attack.standar))
  attack.pie <- setNames(attack.pie, c("Attack", "Count"))

  attack.pie <- attack.pie[attack.pie$Attack != "",]
  attack.pie <- attack.pie[attack.pie$Count > (sum(attack.pie$Count) * 0.01),]

  graph1 <- ggplot(data=attack.pie,
         aes(x=factor(1),
             y=Count,
             fill=Attack)) +
    geom_col(width = 1, color='black') +
#    geom_label(aes(label=paste( round(x = 100 - (sum(attack.pie$Count) / attack.pie$Count), digits = 2), "%")),
#               vjust=c(0),
#               hjust=c(0)) +
    coord_polar(theta="y") +
    scale_x_discrete(labels = c("")) +
    scale_y_discrete(labels = c("")) +
    theme(plot.title = element_text(hjust = 0.5),
          axis.title.x=element_blank(),
          axis.title.y=element_blank()) +
Miguel Tuñón authored
111
    ggtitle("Attacks pie")
Miguel Tuñón authored
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

  graph1
}

GetAttackTypeEvolution <- function(Attacks){
  Attacks.pre <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Attack.standar)
  Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
  Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
  Attacks.pre <- Attacks.pre[Attacks.pre$Attack != "",]
  Attacks.pre <- plyr::arrange(Attacks.pre, Year, Attack)


  b <- as.character(sort(unique(Attacks.pre$Attack)))

  Attacks.desg <- data.frame(Year = sort(unique(Attacks.pre$Year)))

  for (i in 1:length(b)) {
    Attacks.desg <- cbind(Attacks.desg, Attacks.pre[Attacks.pre$Attack == b[i],3])
  }

  Attacks.desg <- setNames(Attacks.desg, c("Year", gsub(" ", ".", b)))

  Attacks.desg <- select(Attacks.desg, Year, `Account.Hijacking`, `DDoS`, `Defacement`, `DNS`, `Injection`, `Malware`)

  graph1 <- ggplot(data = Attacks.desg,
                   aes_string(x = colnames(Attacks.desg)[1]))

  graph1 <- graph1 +

    #geom_line(aes(y = Zero.day, group = 1, colour = "Zero.day")) +
    #geom_point(aes(y = Zero.day, group = 1, colour = "Zero.day")) +

    geom_line(aes(y = `Account.Hijacking`, group = 1, colour = "Account.Hijacking")) +
    geom_point(aes(y = `Account.Hijacking`, group = 1, colour = "Account.Hijacking")) +

    geom_line(aes(y = `DDoS`, group = 1, colour = "DDoS")) +
    geom_point(aes(y = `DDoS`, group = 1, colour = "DDoS")) +

    geom_line(aes(y = `Defacement`, group = 1, colour = "Defacement")) +
    geom_point(aes(y = `Defacement`, group = 1, colour = "Defacement")) +

    geom_line(aes(y = `DNS`, group = 1, colour = "DNS")) +
    geom_point(aes(y = `DNS`, group = 1, colour = "DNS")) +

    geom_line(aes(y = `Injection`, group = 1, colour = "Injection")) +
    geom_point(aes(y = `Injection`, group = 1, colour = "Injection")) +

    geom_line(aes(y = `Malware`, group = 1, colour = "Malware")) +
    geom_point(aes(y = `Malware`, group = 1, colour = "Malware")) +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Attack type evolution") +
    labs(colour = "Attack type") + xlab("Years") + ylab("Attacks")

  graph1

  }

GetAttackTypeTopEvolution <- function(Attacks){
  Attacks.pre <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Attack.standar)
  Attacks.pre <- as.data.frame(table(Attacks.pre$Year, Attacks.pre$Attack.standar))
  Attacks.pre <- setNames(Attacks.pre, c("Year", "Attack", "Count"))
  Attacks.pre <- Attacks.pre[Attacks.pre$Attack != "",]
  Attacks.pre <- plyr::arrange(Attacks.pre, Year, Attack)

  b <- as.character(sort(unique(Attacks.pre$Attack)))

  Attacks.desg <- data.frame(Year = sort(unique(Attacks.pre$Year)))

  for (i in 1:length(b)) {
    Attacks.desg <- cbind(Attacks.desg, Attacks.pre[Attacks.pre$Attack == b[i],3])
  }

  Attacks.desg <- setNames(Attacks.desg, c("Year", b))

  Attacks.desg <- select(Attacks.desg, Year, `Account Hijacking`, `DDoS`, `Defacement`, `DNS`, `Injection`, `Malware`)

  graph1 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `DDoS`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("DDoS") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph2 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `Defacement`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Defacement") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph3 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `Injection`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Injection") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph4 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `Account Hijacking`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Account Hijacking") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph5 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `Malware`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Malware") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph6 <- ggplot(data = Attacks.desg,
                   aes(x = Year, y = `DNS`, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("DNS") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))


  list(graph1, graph2, graph3, graph4, graph5, graph6)

}
Miguel Tuñón authored
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#----------------------------------------------------------------
#-------------------------Geolocal evolution---------
#----------------------------------------------------------------

GetContinentPie <- function (Attacks, Cert_PerCountry){

  attack.pie <- group_by(Attacks, Continent)
  attack.pie <- as.data.frame(table(attack.pie$Continent))
  attack.pie <- setNames(attack.pie, c("Continent", "Count"))

  attack.pie <- attack.pie[attack.pie$Continent != "",]
  #attack.pie <- attack.pie[attack.pie$Count > (sum(attack.pie$Count) * 0.01),]

  graph1 <- ggplot(data=attack.pie,
                   aes(x=factor(1),
                       y=Count,
                       fill=Continent)) +
    geom_col(width = 1, color='black') +
    geom_label(aes(label=paste(round(100 * attack.pie$Count / sum(attack.pie$Count), 2), "%")),
                   vjust=c(-2.5, 0, 2, 0, -2.5),
                   hjust=c(1.4, 1, 0.5, 0.5, 0)) +
    coord_polar(theta="y") +
    scale_x_discrete(labels = c("")) +
    scale_y_discrete(labels = c("")) +
    theme(plot.title = element_text(hjust = 0.5),
          axis.title.x=element_blank(),
          axis.title.y=element_blank()) +
    ggtitle("Attacks")

  cert.pie <- mutate(Cert_PerCountry, Total = X2011 + X2012 + X2013 + X2014 + X2015) %>%
              group_by(Continent)
  cert.pie <- data.frame(Continent = c("Asia", "Europe", "Africa", "Americas", "Oceania"),
                         Count = c(sum((cert.pie[cert.pie$Continent == "Asia",])$Total),
                                   sum((cert.pie[cert.pie$Continent == "Europe",])$Total),
                                   sum((cert.pie[cert.pie$Continent == "Africa",])$Total),
                                   sum((cert.pie[cert.pie$Continent == "Americas",])$Total),
                                   sum((cert.pie[cert.pie$Continent == "Oceania",])$Total)))
  graph2 <- ggplot(data=cert.pie,
                   aes(x=factor(1),
                       y=Count,
                       fill=Continent)) +
    geom_col(width = 1, color='black') +
    geom_label(aes(label=paste(round(100 * cert.pie$Count / sum(cert.pie$Count), 2), "%")),
                   vjust=c(0, -1.5, -2.5, -2.5, -2.5),
                   hjust=c(0.5, 0.2, 0.5, 1.8, -0.5)) +
    coord_polar(theta="y") +
    scale_x_discrete(labels = c("")) +
    scale_y_discrete(labels = c("")) +
    theme(plot.title = element_text(hjust = 0.5),
          axis.title.x=element_blank(),
          axis.title.y=element_blank()) +
    ggtitle("ISO 27001")

  list(graph1, graph2)
}

GetContinentAttacksEvolution <- function(Attacks){

  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Continent, Year)
  attacks.evol <- as.data.frame(table(attacks.evol$Continent, attacks.evol$Year))
  colnames(attacks.evol) <- c("Continent", "Year","Attacks")

  attacks.evol <- attacks.evol[attacks.evol$Continent != "Oceania",]
  attacks.evol <- attacks.evol[attacks.evol$Continent != "Africa",]

  graph1 <- ggplot2::qplot(main = "Cyberattacks evolution",
                           x = attacks.evol$Year,
                           y = attacks.evol$Attacks,
                           group = Continent,
                           xlab = "Years",
                           ylab = "Attacks",
                           data = attacks.evol,
                           geom = "point",
                           color = Continent)  +
    geom_line() +
    theme(plot.title = element_text(hjust = 0.5))

  graph1

}

GetContinentCertsEvolution <- function(Cert_PerCountry){

  certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>% group_by(Continent, Year)

  certs.evol <- summarise(certs.evol,
                          #Continent = Continent,
                          #Year = Year,
                          Certs = sum(Certs))
  certs.evol$Year <- substr(certs.evol$Year,2,5)

  certs.evol <- certs.evol[certs.evol$Continent != "Oceania",]
  certs.evol <- certs.evol[certs.evol$Continent != "Africa",]

  graph1 <- ggplot2::qplot(main = "ISO 27001 evolution",
                           x = certs.evol$Year,
                           y = certs.evol$Certs,
                           group = Continent,
                           xlab = "Years",
                           ylab = "Certifications",
                           data = certs.evol,
                           geom = "point",
                           color = Continent)  +
    geom_line() +
    theme(plot.title = element_text(hjust = 0.5))

  graph1

}

GetContinentAttacksTopEvolution <- function(Attacks){
  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Continent)
  attacks.evol <- as.data.frame(table(attacks.evol$Year, attacks.evol$Continent))
  attacks.evol <- setNames(attacks.evol, c("Year", "Continent", "Count"))
  attacks.evol <- attacks.evol[attacks.evol$Continent != "",]

  attacks.evol <- spread(attacks.evol, "Continent", "Count")

  graph1 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = Americas, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Americas") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph2 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = Asia, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Asia") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph3 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = Europe, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Europe") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))


  list(graph1, graph2, graph3)

}

GetContinentCertsTopEvolution <- function(Attacks){

  certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>% group_by(Continent, Year)
Miguel Tuñón authored
419
Miguel Tuñón authored
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
  certs.evol <- summarise(certs.evol,
                          #Continent = Continent,
                          #Year = Year,
                          Certs = sum(Certs))
  certs.evol$Year <- substr(certs.evol$Year,2,5)

  certs.evol <- spread(certs.evol, "Continent", "Certs")

  graph1 <- ggplot(data = certs.evol,
                   aes(x = Year, y = Americas, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Americas") +
    xlab("Years") + ylab("Certifications")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph2 <- ggplot(data = certs.evol,
                   aes(x = Year, y = Asia, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Asia") +
    xlab("Years") + ylab("Certifications")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph3 <- ggplot(data = certs.evol,
                   aes(x = Year, y = Europe, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("Europe") +
    xlab("Years") + ylab("Certifications")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))


  list(graph1, graph2, graph3)

}

GetCountriesCol <- function(Attacks, Cert_PerCountry){

  certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>% group_by(Continent, country_short)

  certs.evol <- summarise(certs.evol,
                          Certs = sum(Certs))

  graph1 <- ggplot2::ggplot(aes(x = reorder(country_short, Certs),
                                y = Certs),
                           data = certs.evol[certs.evol$Certs > (sum(certs.evol$Certs) * 0.02),]) +
          geom_col(aes(fill = Continent)) +
          theme(plot.title = element_text(hjust = 0.5)) +
          ggtitle("ISO 27001") +
          xlab("Country") + ylab("Certifications")

  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Continent, Country)
  attacks.evol <- as.data.frame(table(attacks.evol$Year, attacks.evol$Continent, attacks.evol$Country))
  attacks.evol <- setNames(attacks.evol, c("Year", "Continent", "Country", "Count"))
  attacks.evol <- attacks.evol[attacks.evol$Continent != "",]
  attacks.evol <- attacks.evol[attacks.evol$Country != "",]
  attacks.evol <- attacks.evol[attacks.evol$Country != "AU",]

  attacks.evol <- attacks.evol[attacks.evol$Count > (sum((attacks.evol[attacks.evol$Country != "US",])$Count) * 0.01),]
  attacks.evol <- arrange(attacks.evol, Count)


  graph2 <- ggplot2::ggplot(aes(x = reorder(Country, Count),
                                y = Count),
                            data = attacks.evol) +
          geom_col(aes(fill = Continent)) +
          theme(plot.title = element_text(hjust = 0.5)) +
          ggtitle("Attacks") +
          xlab("Country") + ylab("Attacks")

  list(graph1, graph2)

  }
Miguel Tuñón authored
503
Miguel Tuñón authored
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
GetCountriesAttacksTopEvolution <- function(Attacks){
  attacks.evol <- mutate(Attacks, Year = format(Attacks$Date, "%Y")) %>% group_by(Year, Country)
  attacks.evol <- as.data.frame(table(attacks.evol$Year, attacks.evol$Country))
  attacks.evol <- setNames(attacks.evol, c("Year", "Country", "Count"))
  attacks.evol <- attacks.evol[attacks.evol$Country != "",]

  attacks.evol <- spread(attacks.evol, "Country", "Count")

  graph1 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = US, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("US") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph2 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = GB, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("GB") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph3 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = IN, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("IN") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph4 <- ggplot(data = attacks.evol,
                   aes(x = Year, y = JP, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("JP") +
    xlab("Years") + ylab("Attacks")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))


  list(graph1, graph2, graph3, graph4)

}

GetCountriesCertsTopEvolution <- function(Attacks){

  certs.evol <- gather(Cert_PerCountry, "Year", "Certs", 2:6) %>% group_by(country_short, Year)

  certs.evol <- rbind(certs.evol[certs.evol$country_short == "US",],
                      certs.evol[certs.evol$country_short == "GB",],
                      certs.evol[certs.evol$country_short == "IN",],
                      certs.evol[certs.evol$country_short == "JP",])

  certs.evol <- summarise(certs.evol,
                          Certs = sum(Certs))
  certs.evol$Year <- substr(certs.evol$Year,2,5)

  certs.evol <- spread(certs.evol, "country_short", "Certs")

  graph1 <- ggplot(data = certs.evol,
                   aes(x = Year, y = US, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("US") +
    xlab("Years") + ylab("Certifications")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph2 <- ggplot(data = certs.evol,
                   aes(x = Year, y = GB, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("GB") +
    xlab("Years") + ylab("Certifications")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))

  graph3 <- ggplot(data = certs.evol,
                   aes(x = Year, y = IN, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("IN") +
    xlab("Years") + ylab("Certifications")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))


  graph4 <- ggplot(data = certs.evol,
                   aes(x = Year, y = JP, group = 1)) +

    geom_line() +
    geom_point() +

    theme(plot.title = element_text(hjust = 0.5)) +
    ggtitle("JP") +
    xlab("Years") + ylab("Certifications")+
    stat_smooth(method = "lm", se = FALSE, aes(outfit=fit<<-..y..))


  list(graph1, graph2, graph3, graph4)

}


#----------------------------------------------------------------
#-------------------------gelocal/type---------------------------
#----------------------------------------------------------------

GetContinentAttackPie <- function (Attacks){

  attack.pie <- group_by(Attacks, Attack.standar, Country)
  attack.pie <- as.data.frame(table(attack.pie$Country, attack.pie$Attack.standar))
  attack.pie <- setNames(attack.pie, c("Country", "Attack", "Count"))

  attack.pie <- attack.pie[attack.pie$Country != "",]
  attack.pie <- attack.pie[attack.pie$Attack != "",]

  attack.pie$Attack <- as.character(attack.pie$Attack)
  attack.pie[attack.pie$Attack != "DDoS" &
               attack.pie$Attack != "Defacement" &
               attack.pie$Attack != "Injection",]$Attack <- "Otros"
  attack.pie$Attack <- as.factor(attack.pie$Attack)

  attack.pie <- group_by(attack.pie, Attack, Country)
  attack.pie <- summarise(attack.pie, Count = sum(Count))

  attack.pie.US <- attack.pie[attack.pie$Country == "US",]
  attack.pie.JP <- attack.pie[attack.pie$Country == "JP",]


  graph1 <- ggplot(data=attack.pie.US,
                   aes(x=factor(1),
                       y=Count,
                       fill=Attack)) +
    geom_col(width = 1, color='black') +
    geom_label(aes(label=paste(round(100 * attack.pie.US$Count / sum(attack.pie.US$Count), 2), "%")),
               vjust=c(0),
               hjust=c(0)) +
    coord_polar(theta="y") +
    scale_x_discrete(labels = c("")) +
    scale_y_discrete(labels = c("")) +
    theme(plot.title = element_text(hjust = 0.5),
          axis.title.x=element_blank(),
          axis.title.y=element_blank()) +
    ggtitle("US")

  graph2 <- ggplot(data=attack.pie.JP,
                   aes(x=factor(1),
                       y=Count,
                       fill=Attack)) +
    geom_col(width = 1, color='black') +
    geom_label(aes(label=paste(round(100 * attack.pie.JP$Count / sum(attack.pie.JP$Count), 2), "%")),
               vjust=c(0),
               hjust=c(0)) +
    coord_polar(theta="y") +
    scale_x_discrete(labels = c("")) +
    scale_y_discrete(labels = c("")) +
    theme(plot.title = element_text(hjust = 0.5),
          axis.title.x=element_blank(),
          axis.title.y=element_blank()) +
    ggtitle("JP")

  list(graph1, graph2)
}
Miguel Tuñón authored
688
689
690
#----------------------------------------------------------------
#----------------------------------------------------------------
#----------------------------------------------------------------
Miguel Tuñón authored
691
692
Miguel Tuñón authored
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
GetBaseCertsGraph <- function(Cert_PerCountry, year){
  graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
                           x = reorder(country_short,X2012),
                           y = X2012,
                           xlab = "Country",
                           ylab = "Number of certifications",
                           data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
                           geom = "col",
                           fill = Continent)
  graph1
}
Miguel Tuñón authored
708
709
710
711
712
713
714
715
#' Return every graph used in the report file
#'
#' @param Cert_PerCountry data.frame with the processed data of ISO 27001 certifications
#' @param Attacks data.frame with the processed data of cyberattacks
#'
#' @return data.frame
#' @export
GetReportGraphs <- function(Cert_PerCountry,Attacks) {
Imanol-Mikel Barba Sabariego authored
716
  #2012
Miguel Tuñón authored
717
  graph1 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2012)",
Imanol-Mikel Barba Sabariego authored
718
719
                  x = reorder(country_short,X2012),
                  y = X2012,
Miguel Tuñón authored
720
721
                  xlab = "Country",
                  ylab = "Number of certifications",
Miguel Tuñón authored
722
723
724
725
                  data = Cert_PerCountry[Cert_PerCountry$X2012 > mean(Cert_PerCountry$X2012),],
                  geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
726
727
728
  attacks2k12 <- Attacks[Attacks$Date < "2013-01-01" & Attacks$Date >= "2012-01-01",]
  frameAttacks2k12 <- as.data.frame(table(attacks2k12$Country))
  colnames(frameAttacks2k12) <- c("Country","Attacks")
Miguel Tuñón authored
729
  graph2 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2012)",
Imanol-Mikel Barba Sabariego authored
730
731
                  x = reorder(Country,Attacks),
                  y = Attacks,
Miguel Tuñón authored
732
733
                  xlab = "Country",
                  ylab = "Number of attacks",
Miguel Tuñón authored
734
735
736
                  data = frameAttacks2k12[frameAttacks2k12$Attacks > mean(frameAttacks2k12$Attacks),],
                  geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
737
738
739
740

  Attacks2012ByMonth <- mutate(attacks2k12, month = format(attacks2k12$Date, "%m")) %>% group_by(month)
  Attack2012FreqByMonth <- as.data.frame(table(Attacks2012ByMonth$month))
  colnames(Attack2012FreqByMonth) <- c("Month", "Attacks")
Miguel Tuñón authored
741
742
  graph3 <- ggplot2::qplot(x = as.numeric(Month),
                  y = Attacks,
Imanol-Mikel Barba Sabariego authored
743
744
745
746
                  main = "Global cyberattack progression by month (2012)",
                  data = Attack2012FreqByMonth,
                  geom = c("point", "smooth"),
                  xlim = c(1,12),
Miguel Tuñón authored
747
                  xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
Imanol-Mikel Barba Sabariego authored
748
749

  #2013
Miguel Tuñón authored
750
  graph4 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2013)",
Imanol-Mikel Barba Sabariego authored
751
752
                  x = reorder(country_short,X2013),
                  y = X2013,
Miguel Tuñón authored
753
754
                  xlab = "Country",
                  ylab = "Number of certifications",
Miguel Tuñón authored
755
756
757
                  data = Cert_PerCountry[Cert_PerCountry$X2013 > mean(Cert_PerCountry$X2013),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
758
759
760
  attacks2k13 <- Attacks[Attacks$Date < "2014-01-01" & Attacks$Date >= "2013-01-01",]
  frameAttacks2k13 <- as.data.frame(table(attacks2k13$Country))
  colnames(frameAttacks2k13) <- c("Country","Attacks")
Miguel Tuñón authored
761
  graph5 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2013)",
Imanol-Mikel Barba Sabariego authored
762
763
                  x = reorder(Country,Attacks),
                  y = Attacks,
Miguel Tuñón authored
764
765
                  xlab = "Country",
                  ylab = "Number of attacks",
Miguel Tuñón authored
766
767
768
                  data = frameAttacks2k13[frameAttacks2k13$Attacks > mean(frameAttacks2k13$Attacks),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
769
770
771
772

  Attacks2013ByMonth <- mutate(attacks2k13, month = format(attacks2k13$Date, "%m")) %>% group_by(month)
  Attack2013FreqByMonth <- as.data.frame(table(Attacks2013ByMonth$month))
  colnames(Attack2013FreqByMonth) <- c("Month", "Attacks")
Miguel Tuñón authored
773
774
  graph6 <- ggplot2::qplot(x = as.numeric(Month),
                  y = Attacks,
Imanol-Mikel Barba Sabariego authored
775
776
777
778
                  main = "Global cyberattack progression by month (2013)",
                  data = Attack2013FreqByMonth,
                  geom = c("point", "smooth"),
                  xlim = c(1,12),
Miguel Tuñón authored
779
                  xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
Imanol-Mikel Barba Sabariego authored
780
781

  #2014
Miguel Tuñón authored
782
  graph7 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2014)",
Imanol-Mikel Barba Sabariego authored
783
784
                  x = reorder(country_short,X2014),
                  y = X2014,
Miguel Tuñón authored
785
786
                  xlab = "Country",
                  ylab = "Number of certifications",
Miguel Tuñón authored
787
788
789
                  data = Cert_PerCountry[Cert_PerCountry$X2014 > mean(Cert_PerCountry$X2014),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
790
791
792
  attacks2k14 <- Attacks[Attacks$Date < "2015-01-01" & Attacks$Date >= "2014-01-01",]
  frameAttacks2k14 <- as.data.frame(table(attacks2k14$Country))
  colnames(frameAttacks2k14) <- c("Country","Attacks")
Miguel Tuñón authored
793
  graph8 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2014)",
Imanol-Mikel Barba Sabariego authored
794
795
                  x = reorder(Country,Attacks),
                  y = Attacks,
Miguel Tuñón authored
796
797
                  xlab = "Country",
                  ylab = "Number of attacks",
Miguel Tuñón authored
798
799
800
                  data = frameAttacks2k14[frameAttacks2k14$Attacks > mean(frameAttacks2k14$Attacks),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
801
802
803
804

  Attacks2014ByMonth <- mutate(attacks2k14, month = format(attacks2k14$Date, "%m")) %>% group_by(month)
  Attack2014FreqByMonth <- as.data.frame(table(Attacks2014ByMonth$month))
  colnames(Attack2014FreqByMonth) <- c("Month", "Attacks")
Miguel Tuñón authored
805
806
  graph9 <- ggplot2::qplot(x = as.numeric(Month),
                  y = Attacks,
Imanol-Mikel Barba Sabariego authored
807
808
809
810
                  main = "Global cyberattack progression by month (2014)",
                  data = Attack2014FreqByMonth,
                  geom = c("point", "smooth"),
                  xlim = c(1,12),
Miguel Tuñón authored
811
                  xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
Imanol-Mikel Barba Sabariego authored
812
813

  #2015
Miguel Tuñón authored
814
  graph10 <- ggplot2::qplot(main = "Countries with above average number of companies certified with 27001 (2015)",
Imanol-Mikel Barba Sabariego authored
815
816
                  x = reorder(country_short,X2015),
                  y = X2015,
Miguel Tuñón authored
817
818
                  xlab = "Country",
                  ylab = "Number of certifications",
Miguel Tuñón authored
819
820
821
                  data = Cert_PerCountry[Cert_PerCountry$X2015 > mean(Cert_PerCountry$X2015),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
822
823
824
  attacks2k15 <- Attacks[Attacks$Date < "2016-01-01" & Attacks$Date >= "2015-01-01",]
  frameAttacks2k15 <- as.data.frame(table(attacks2k15$Country))
  colnames(frameAttacks2k15) <- c("Country","Attacks")
Miguel Tuñón authored
825
  graph11 <- ggplot2::qplot(main = "Countries with above average number of cyberattacks (2015)",
Imanol-Mikel Barba Sabariego authored
826
827
                  x = reorder(Country,Attacks),
                  y = Attacks,
Miguel Tuñón authored
828
829
                  xlab = "Country",
                  ylab = "Number of attacks",
Miguel Tuñón authored
830
831
832
                  data = frameAttacks2k15[frameAttacks2k15$Attacks > mean(frameAttacks2k15$Attacks),]
                  , geom = "col",
                  fill = Continent)
Imanol-Mikel Barba Sabariego authored
833
834
835
836

  Attacks2015ByMonth <- mutate(attacks2k15, month = format(attacks2k15$Date, "%m")) %>% group_by(month)
  Attack2015FreqByMonth <- as.data.frame(table(Attacks2015ByMonth$month))
  colnames(Attack2015FreqByMonth) <- c("Month", "Attacks")
Miguel Tuñón authored
837
  graph12 <- ggplot2::qplot(x = as.numeric(Month),
Imanol-Mikel Barba Sabariego authored
838
839
840
841
842
                  y = Attacks,
                  main = "Global cyberattack progression by month (2015)",
                  data = Attack2015FreqByMonth,
                  geom = c("point", "smooth"),
                  xlim = c(1,12),
Miguel Tuñón authored
843
                  xlab = "Month") + ggplot2::scale_x_continuous(breaks = 1:12)
Imanol-Mikel Barba Sabariego authored
844
845
846
847
848
849




  list(graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9,graph10,graph11,graph12)
}